Binational Arsenic Exposure Survey: Modeling Arsenic and Selenium Intake on Urinary Arsenic Biomarkers

Persistent Link:
http://hdl.handle.net/10150/255165
Title:
Binational Arsenic Exposure Survey: Modeling Arsenic and Selenium Intake on Urinary Arsenic Biomarkers
Author:
Roberge, Jason Linscot
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Introduction: It has been reported that the principal source of exposure for humans to inorganic arsenic (As) comes from drinking water. It is known that selenium (Se) competes with the reductive metabolism and methylation of As and Se compete for the availability of glutathione. The overarching goal of this dissertation research is to assess relationships between arsenic intake from water and other fluids with urinary arsenic output and then to assess how urinary arsenic output is modified by selenium exposure. Methods: Households in the Binational Arsenic Exposure Survey (BAsES) were selected for their varying groundwater arsenic concentrations. A first morning urine void and water samples from all household drinking sources were collected for As quantification. Relationships were examined between various urinary arsenic biomarkers and estimated arsenic exposures. The association between urinary arsenic biomarkers and dietary intake and urinary output of selenium was also evaluated. Results: Arizonans reported consuming 18.5 mL/kg-day of water and 34.3 mL/kg-day from all fluids. In contrast, participants from Mexico reported 3.5 mL/kg-day of water and 12.3 mL/kg-day from all fluids. Median urinary inorganic As concentration among Arizona participants (ranging from 1.2 to 2.0 µg/L) was lower than among participants from Mexico (range 2.5 to 6.2 µg/L). Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p<0.001), urinary inorganic arsenic concentration (p<0.001), and urinary sum of species (p<0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. No statistically significant relationships were seen between urinary methylated arsenic biomarkers with either dietary intake of selenium or the urinary selenium concentration. Conclusion: Water was the primary contributor to total fluid intake among Arizonans while Mexico participants primarily consumed carbonated beverages. Arsenic intake from water was significantly associated with urinary arsenic output; however, the concentration of arsenic consumed explained a small fraction of urinary arsenic levels. While selenium can biologically interact with arsenic in the liver, no relationship between urinary arsenic biomarkers were identified with either dietary intake of selenium or urinary output of selenium.
Type:
text; Electronic Dissertation
Keywords:
methylation; selenium; urine; water; Epidemiology; arsenic; BAsES
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Epidemiology
Degree Grantor:
University of Arizona
Advisor:
Harris, Robin

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleBinational Arsenic Exposure Survey: Modeling Arsenic and Selenium Intake on Urinary Arsenic Biomarkersen_US
dc.creatorRoberge, Jason Linscoten_US
dc.contributor.authorRoberge, Jason Linscoten_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIntroduction: It has been reported that the principal source of exposure for humans to inorganic arsenic (As) comes from drinking water. It is known that selenium (Se) competes with the reductive metabolism and methylation of As and Se compete for the availability of glutathione. The overarching goal of this dissertation research is to assess relationships between arsenic intake from water and other fluids with urinary arsenic output and then to assess how urinary arsenic output is modified by selenium exposure. Methods: Households in the Binational Arsenic Exposure Survey (BAsES) were selected for their varying groundwater arsenic concentrations. A first morning urine void and water samples from all household drinking sources were collected for As quantification. Relationships were examined between various urinary arsenic biomarkers and estimated arsenic exposures. The association between urinary arsenic biomarkers and dietary intake and urinary output of selenium was also evaluated. Results: Arizonans reported consuming 18.5 mL/kg-day of water and 34.3 mL/kg-day from all fluids. In contrast, participants from Mexico reported 3.5 mL/kg-day of water and 12.3 mL/kg-day from all fluids. Median urinary inorganic As concentration among Arizona participants (ranging from 1.2 to 2.0 µg/L) was lower than among participants from Mexico (range 2.5 to 6.2 µg/L). Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p<0.001), urinary inorganic arsenic concentration (p<0.001), and urinary sum of species (p<0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. No statistically significant relationships were seen between urinary methylated arsenic biomarkers with either dietary intake of selenium or the urinary selenium concentration. Conclusion: Water was the primary contributor to total fluid intake among Arizonans while Mexico participants primarily consumed carbonated beverages. Arsenic intake from water was significantly associated with urinary arsenic output; however, the concentration of arsenic consumed explained a small fraction of urinary arsenic levels. While selenium can biologically interact with arsenic in the liver, no relationship between urinary arsenic biomarkers were identified with either dietary intake of selenium or urinary output of selenium.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectmethylationen_US
dc.subjectseleniumen_US
dc.subjecturineen_US
dc.subjectwateren_US
dc.subjectEpidemiologyen_US
dc.subjectarsenicen_US
dc.subjectBAsESen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEpidemiologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHarris, Robinen_US
dc.contributor.committeememberRoe, Deniseen_US
dc.contributor.committeememberBurgess, Jeffereyen_US
dc.contributor.committeememberPettygrove, Sydneyen_US
dc.contributor.committeememberHarris, Robinen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.