Persistent Link:
http://hdl.handle.net/10150/255161
Title:
Characterizing Polymers for Cardiovascular Devices
Author:
Warren, Phillip Daniel
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Abdominal aortic aneurysm (AAA) occurs in developed nations. The current treatment, endovascular aneurysm repair (EVAR), while successful, has shortcomings. A solution to the concerns with EVAR is a polymeric endo-aortic paving (PEAP). Our goal is to further develop this treatment for AAA. We hypothesize that PEAP will overcome the current limitations associated with current AAA repair, while maintaining the desirable qualities of these materials are biocompatibility, thermoformability, and material compliance with aortic tissue. The purpose of this work was to evaluate potential PEAP material candidates, which include acrylate-based shape memory polymers (SMPs), polycaprolactone (PCL) and polyurethane (PU) blends, and finally a PCL-based bioresorbable copolymer poly (ester-urethane-urea) (PEUU). Materials were assessed by characterization of their chemical, thermomechanical and degradation properties. It was determined that acrylate- SMPs were too stiff to be candidates for use in PEAP. The control of the PEUU copolymer composition yielded a material that had increased degradability while maintaining valuable characteristics of the PCL/PU blend prior to, during, and following degradation. The difference between the PU hydrophobicity dictated MTM sensitivity to water immersion and degradation characteristics. Conventional statistics were used to develop three models for predicting key properties of PEUU. Important variables, such as PCL M(n), temperature, and crystallinity were found to impact both copolymer microstructure and mechanical properties.
Type:
text; Electronic Dissertation
Keywords:
Device; Mechanical; Polymer; Biomedical Engineering; Cardiovascular; Characterization
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Biomedical Engineering
Degree Grantor:
University of Arizona
Advisor:
Vande Geest, Jonathan P.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCharacterizing Polymers for Cardiovascular Devicesen_US
dc.creatorWarren, Phillip Danielen_US
dc.contributor.authorWarren, Phillip Danielen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAbdominal aortic aneurysm (AAA) occurs in developed nations. The current treatment, endovascular aneurysm repair (EVAR), while successful, has shortcomings. A solution to the concerns with EVAR is a polymeric endo-aortic paving (PEAP). Our goal is to further develop this treatment for AAA. We hypothesize that PEAP will overcome the current limitations associated with current AAA repair, while maintaining the desirable qualities of these materials are biocompatibility, thermoformability, and material compliance with aortic tissue. The purpose of this work was to evaluate potential PEAP material candidates, which include acrylate-based shape memory polymers (SMPs), polycaprolactone (PCL) and polyurethane (PU) blends, and finally a PCL-based bioresorbable copolymer poly (ester-urethane-urea) (PEUU). Materials were assessed by characterization of their chemical, thermomechanical and degradation properties. It was determined that acrylate- SMPs were too stiff to be candidates for use in PEAP. The control of the PEUU copolymer composition yielded a material that had increased degradability while maintaining valuable characteristics of the PCL/PU blend prior to, during, and following degradation. The difference between the PU hydrophobicity dictated MTM sensitivity to water immersion and degradation characteristics. Conventional statistics were used to develop three models for predicting key properties of PEUU. Important variables, such as PCL M(n), temperature, and crystallinity were found to impact both copolymer microstructure and mechanical properties.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectDeviceen_US
dc.subjectMechanicalen_US
dc.subjectPolymeren_US
dc.subjectBiomedical Engineeringen_US
dc.subjectCardiovascularen_US
dc.subjectCharacterizationen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineBiomedical Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorVande Geest, Jonathan P.en_US
dc.contributor.committeememberMcGrath, Dominic V.en_US
dc.contributor.committeememberWu, Xiaoyien_US
dc.contributor.committeememberUhlmann, Donald R.en_US
dc.contributor.committeememberVande Geest, Jonathan P.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.