Diversity, Distributions, and Host Affiliations of Fungal Endophytes Associated with Seedless Vascular Plants

Persistent Link:
http://hdl.handle.net/10150/243097
Title:
Diversity, Distributions, and Host Affiliations of Fungal Endophytes Associated with Seedless Vascular Plants
Author:
Del Olmo Ruiz, Mariana
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 25-Aug-2013
Abstract:
In this dissertation, I explore the diversity of endophytic fungi associated with above-ground tissues of neotropical ferns, assess factors shaping their community structure in three forests, and explore the contributions of endophytes and related strains to our understanding of the diversity and ecology of a representative genus of Ascomycota. In Appendix A, I report a survey of endophytic fungi from seven species of ferns at La Selva, Costa Rica. Using both species-level and phylogenetic analyses, I compare culturable endophytes as a function of fern taxonomy, frond tissues (blades vs. stalks), habits (terrestrial vs. epiphytic), and vegetation types (arboretum vs. primary and secondary forest) during two consecutive years. Analysis of>500 strains provides a first taxonomic overview of fern endophytes at a community scale and reveals high diversity, host preference, and interannual variation in fungal assemblages. However, when variation due to host species is taken into account, community structure is similar among fern tissue types, habits, and sampling sites over a small spatial scale. In Appendix B, I expand my work to evaluate the abundance, species-level and phylogenetic diversity, and distributions of fern-affiliated endophytes in three neotropical forests (La Selva, Costa Rica; Barro Colorado Island, Panama; Los Tuxtlas, Mexico). My analysis of > 2000 isolates reveals that communities differ significantly among fern species within sites, and among ferns in different sites. Intersite differences in communities are correlated with geographic distance and environmental dissimilarity. My work suggests that extrapolative estimates of fungal diversity should take into account not just host species, but locality and environmental variation as well. In Appendix C I focus on a representative genus of Ascomycota (Lecythophora) to evaluate how multi-locus phylogenetic analyses of endophytes can detect new species. Lecythophora is a geographically widespread genus that includes opportunistic human pathogens, produces novel secondary metabolites, and consists presently of six described species. Multi-locus analysis of 33 newly collected strains suggested seven phylogenetic species that are new to science and highlighted their capacity to inhibit growth of two plant pathogenic fungi. This work shows how recognition of cryptic species even in well-characterized genera has major implications for estimating fungal biodiversity.
Type:
text; Electronic Dissertation
Keywords:
fungi; tropics; Plant Pathology; endophytes; ferns
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Plant Pathology
Degree Grantor:
University of Arizona
Advisor:
Arnold, Anne Elizabeth

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDiversity, Distributions, and Host Affiliations of Fungal Endophytes Associated with Seedless Vascular Plantsen_US
dc.creatorDel Olmo Ruiz, Marianaen_US
dc.contributor.authorDel Olmo Ruiz, Marianaen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 25-Aug-2013en_US
dc.description.abstractIn this dissertation, I explore the diversity of endophytic fungi associated with above-ground tissues of neotropical ferns, assess factors shaping their community structure in three forests, and explore the contributions of endophytes and related strains to our understanding of the diversity and ecology of a representative genus of Ascomycota. In Appendix A, I report a survey of endophytic fungi from seven species of ferns at La Selva, Costa Rica. Using both species-level and phylogenetic analyses, I compare culturable endophytes as a function of fern taxonomy, frond tissues (blades vs. stalks), habits (terrestrial vs. epiphytic), and vegetation types (arboretum vs. primary and secondary forest) during two consecutive years. Analysis of>500 strains provides a first taxonomic overview of fern endophytes at a community scale and reveals high diversity, host preference, and interannual variation in fungal assemblages. However, when variation due to host species is taken into account, community structure is similar among fern tissue types, habits, and sampling sites over a small spatial scale. In Appendix B, I expand my work to evaluate the abundance, species-level and phylogenetic diversity, and distributions of fern-affiliated endophytes in three neotropical forests (La Selva, Costa Rica; Barro Colorado Island, Panama; Los Tuxtlas, Mexico). My analysis of > 2000 isolates reveals that communities differ significantly among fern species within sites, and among ferns in different sites. Intersite differences in communities are correlated with geographic distance and environmental dissimilarity. My work suggests that extrapolative estimates of fungal diversity should take into account not just host species, but locality and environmental variation as well. In Appendix C I focus on a representative genus of Ascomycota (Lecythophora) to evaluate how multi-locus phylogenetic analyses of endophytes can detect new species. Lecythophora is a geographically widespread genus that includes opportunistic human pathogens, produces novel secondary metabolites, and consists presently of six described species. Multi-locus analysis of 33 newly collected strains suggested seven phylogenetic species that are new to science and highlighted their capacity to inhibit growth of two plant pathogenic fungi. This work shows how recognition of cryptic species even in well-characterized genera has major implications for estimating fungal biodiversity.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectfungien_US
dc.subjecttropicsen_US
dc.subjectPlant Pathologyen_US
dc.subjectendophytesen_US
dc.subjectfernsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePlant Pathologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorArnold, Anne Elizabethen_US
dc.contributor.committeememberBronstein, Judith L.en_US
dc.contributor.committeememberOrbach, Marc J.en_US
dc.contributor.committeememberPryor, Barryen_US
dc.contributor.committeememberBarker, Michaelen_US
dc.contributor.committeememberArnold, Anne Elizabethen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.