Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations

Persistent Link:
http://hdl.handle.net/10150/242386
Title:
Metal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operations
Author:
Csavina, Janae Lynn
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb, Cd and other potentially toxic elements. Dust particles emitted from mining operations can accumulate in surrounding soils, natural waters and vegetation at relatively high concentrations through wind and water transport. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion, particularly during the early years when children are likely to exhibit pica. Furthermore, smelting operations release metals and metalloids in the form of fumes and ultra-fine particulate matter, which disperses more readily than coarser soil dusts. Of specific concern, these fine particulates can be transported to the lungs, allowing contaminants to be transferred into the blood stream. The main aim of this research is to assess the role of atmospheric aerosol and dust in the transport of metal and metalloid contaminants from mining operations to assess the deleterious impacts of these emissions to ecology and human health. In a field campaign, ambient particulates from five mining sites and four reference sites were examined utilizing micro-orifice deposit impactors (MOUDI), total suspended particulate (TSP) collectors, a scanning mobility particle sizer (SMPS), and Dusttrak optical particle counters for an understanding of the fate and transport of atmospheric aerosols. One of the major findings from size-resolved chemical characterization at three mining sites showed that the majority of the contaminant concentrations were found in the fine size fraction (<1 micrometer). Further, metal and metalloids (e.g. As, Cd, and Pb) around smelting activities are significantly enriched in both the coarse and fine size fraction when compared to reference sites. Additionally, with dust events being a growing concern because of predicted climate change and mine tailings being a significant source for dust, high wind conditions around mine tailings were studied for dust generation. Relative humidity was found to play an important predicting role in atmospheric dust concentration. More generally, findings indicate mining activities remain a serious threat to human health and ecology despite the regulations in place to protect from their pollution.
Type:
text; Electronic Dissertation
Keywords:
Dust; Metals and metalloids; Mining; Tailings; Environmental Engineering; Aerosol; Arsenic and lead
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Environmental Engineering
Degree Grantor:
University of Arizona
Advisor:
Sáez, Avelino Eduardo

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleMetal and Metalloid Contaminants in Atmospheric Aerosols from Mining Operationsen_US
dc.creatorCsavina, Janae Lynnen_US
dc.contributor.authorCsavina, Janae Lynnen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb, Cd and other potentially toxic elements. Dust particles emitted from mining operations can accumulate in surrounding soils, natural waters and vegetation at relatively high concentrations through wind and water transport. Human exposure to the dust can occur through inhalation and, especially in the case of children, incidental dust ingestion, particularly during the early years when children are likely to exhibit pica. Furthermore, smelting operations release metals and metalloids in the form of fumes and ultra-fine particulate matter, which disperses more readily than coarser soil dusts. Of specific concern, these fine particulates can be transported to the lungs, allowing contaminants to be transferred into the blood stream. The main aim of this research is to assess the role of atmospheric aerosol and dust in the transport of metal and metalloid contaminants from mining operations to assess the deleterious impacts of these emissions to ecology and human health. In a field campaign, ambient particulates from five mining sites and four reference sites were examined utilizing micro-orifice deposit impactors (MOUDI), total suspended particulate (TSP) collectors, a scanning mobility particle sizer (SMPS), and Dusttrak optical particle counters for an understanding of the fate and transport of atmospheric aerosols. One of the major findings from size-resolved chemical characterization at three mining sites showed that the majority of the contaminant concentrations were found in the fine size fraction (<1 micrometer). Further, metal and metalloids (e.g. As, Cd, and Pb) around smelting activities are significantly enriched in both the coarse and fine size fraction when compared to reference sites. Additionally, with dust events being a growing concern because of predicted climate change and mine tailings being a significant source for dust, high wind conditions around mine tailings were studied for dust generation. Relative humidity was found to play an important predicting role in atmospheric dust concentration. More generally, findings indicate mining activities remain a serious threat to human health and ecology despite the regulations in place to protect from their pollution.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectDusten_US
dc.subjectMetals and metalloidsen_US
dc.subjectMiningen_US
dc.subjectTailingsen_US
dc.subjectEnvironmental Engineeringen_US
dc.subjectAerosolen_US
dc.subjectArsenic and leaden_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEnvironmental Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSáez, Avelino Eduardoen_US
dc.contributor.committeememberBetterton, Eric A.en_US
dc.contributor.committeememberMaier, Raina M.en_US
dc.contributor.committeememberEla, Wendell P.en_US
dc.contributor.committeememberSáez, Avelino Eduardoen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.