Optical Design of Volume Holographic Imaging Systems for Microscopy

Persistent Link:
http://hdl.handle.net/10150/242357
Title:
Optical Design of Volume Holographic Imaging Systems for Microscopy
Author:
de Leon, Erich Ernesto
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Confocal microscopy rejects out of focus light from the object by scanning a pinhole through the object and constructing the image point by point. Volume holographic imaging (VHI) systems with bright-field illumination have been proposed as an alternative to conventional confocal type microscopes. VHI systems are an imaging modality that does not require scanning of a pinhole or a slit and thus provides video rate imaging of 3-dimensional objects. However, due to the wavelength-position degeneracy of the hologram, these systems produce less than optimal optical sectioning because the high selectivity of the volume hologram is not utilized. In this dissertation a generalized method for the design of VHI systems applied to microscopy is developed. Discussion includes the inter-relationships between the dispersive, degenerate, and depth axes of the system. Novel designs to remove the wavelength-position degeneracy and improve optical sectioning in these systems are also considered. Optimization of a fluorescence imaging system and of dual-grating confocal-rainbow designs are investigated. A ray-trace simulation that integrates the hologram diffraction efficiency and imaging results is constructed and an experimental system evaluated to demonstrate the optimization method. This results in an empirical relation between depth resolution and design tolerances. The dispersion and construction tolerances of a confocal-rainbow volume holographic imaging system are defined by the Bragg selectivity of the holograms. It is found that a broad diffraction efficiency profile of the illumination hologram with a narrow imaging hologram profile is an optimal balance between field of view, construction alignment, and depth resolution. The approach in this research is directly applicable towards imaging ovarian cells for the detection of cancer. Modeling methods, illumination design, eliminating the wavelength degeneracy of the hologram, and incorporating florescence imaging capability are emphasized in this dissertation. Results from this research may be used not only for biomedical imaging, but also for the design of volume holographic systems for both imaging and sensor applications in other fields including manufacturing (e.g. pharmaceutical), aerospace (e.g. LIDAR), and the physical sciences (e.g. climate change).
Type:
text; Electronic Dissertation
Keywords:
imaging; microscopy; Optical design; volume hologram; Optical Sciences; holography; illumination design
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Kostuk, Raymond K.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOptical Design of Volume Holographic Imaging Systems for Microscopyen_US
dc.creatorde Leon, Erich Ernestoen_US
dc.contributor.authorde Leon, Erich Ernestoen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractConfocal microscopy rejects out of focus light from the object by scanning a pinhole through the object and constructing the image point by point. Volume holographic imaging (VHI) systems with bright-field illumination have been proposed as an alternative to conventional confocal type microscopes. VHI systems are an imaging modality that does not require scanning of a pinhole or a slit and thus provides video rate imaging of 3-dimensional objects. However, due to the wavelength-position degeneracy of the hologram, these systems produce less than optimal optical sectioning because the high selectivity of the volume hologram is not utilized. In this dissertation a generalized method for the design of VHI systems applied to microscopy is developed. Discussion includes the inter-relationships between the dispersive, degenerate, and depth axes of the system. Novel designs to remove the wavelength-position degeneracy and improve optical sectioning in these systems are also considered. Optimization of a fluorescence imaging system and of dual-grating confocal-rainbow designs are investigated. A ray-trace simulation that integrates the hologram diffraction efficiency and imaging results is constructed and an experimental system evaluated to demonstrate the optimization method. This results in an empirical relation between depth resolution and design tolerances. The dispersion and construction tolerances of a confocal-rainbow volume holographic imaging system are defined by the Bragg selectivity of the holograms. It is found that a broad diffraction efficiency profile of the illumination hologram with a narrow imaging hologram profile is an optimal balance between field of view, construction alignment, and depth resolution. The approach in this research is directly applicable towards imaging ovarian cells for the detection of cancer. Modeling methods, illumination design, eliminating the wavelength degeneracy of the hologram, and incorporating florescence imaging capability are emphasized in this dissertation. Results from this research may be used not only for biomedical imaging, but also for the design of volume holographic systems for both imaging and sensor applications in other fields including manufacturing (e.g. pharmaceutical), aerospace (e.g. LIDAR), and the physical sciences (e.g. climate change).en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectimagingen_US
dc.subjectmicroscopyen_US
dc.subjectOptical designen_US
dc.subjectvolume hologramen_US
dc.subjectOptical Sciencesen_US
dc.subjectholographyen_US
dc.subjectillumination designen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKostuk, Raymond K.en_US
dc.contributor.committeememberBarton, Jennifer K.en_US
dc.contributor.committeememberSasian, Joseen_US
dc.contributor.committeememberKostuk, Raymond K.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.