Climate and Environmental Influences on the Ecology of Vectors and Vector-borne Diseases

Persistent Link:
http://hdl.handle.net/10150/241951
Title:
Climate and Environmental Influences on the Ecology of Vectors and Vector-borne Diseases
Author:
Morin, Cory William
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Recently researchers have recognized the potential effects of climate variability and climate change on infectious disease ecology. Mosquito-borne diseases are of considerable concern due to their reliance on temperature to regulate vector reproduction, survival, and vector and agent development. Precipitation is also influential because it helps maintain habitat for immature mosquitoes. The interactions between climate, vector, and agent are complex, however, and thus assessing the overall impact of climate on disease occurrence is difficult. Discerning the influence of climate on mosquito-borne diseases requires an interdisciplinary synthesis of knowledge about the relationships between components of the disease system and analysis techniques that account for the individual and interacting roles that each element contributes to the ecology of the disease. In this dissertation, climate and climate change influences on dengue fever and West Nile virus are identified through process based modeling to simulate changes in vector and viral transmission dynamics. Analysis of the literature pertaining to climate influences on dengue virus ecology reveals that climate variables often interact interdependently to influence dengue virus transmission. Statistical techniques correlating or modeling climate-dengue relationships are often inconsistent and location specific. Process based modeling has been employed to better simulate the intricacies and non-linear dynamics involved, but most models focus only on vector populations. Therefore, models should incorporate viral development and transmission components to better simulate dengue virus ecology. A model of West Nile virus vector dynamics across the southern United States reveals that impacts from climate change are very location and context-specific. While temperatures generally increase the season length of vector activity, changes in precipitation and evapotranspiration dynamics often lead to lower summer mosquito populations and limited population development in water-stressed areas. A simulation of dengue fever cases in San Juan County, Puerto Rico with a coupled vector-epidemiological model showed strong agreement when compared with reported case data (Willmott's d = 0.90 and r2 = 0.71). The model indicates that certain climate variables became disease limiting during specific times of the year. Temperature limits virus transmission during the winter by slowing viral development while lower precipitation limits spring transmission by suppressing vector populations.
Type:
text; Electronic Dissertation
Keywords:
Ecology; Environment; Infectious; Vectors; Geography; Climate; Disease
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Geography
Degree Grantor:
University of Arizona
Advisor:
Comrie, Andrew C.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleClimate and Environmental Influences on the Ecology of Vectors and Vector-borne Diseasesen_US
dc.creatorMorin, Cory Williamen_US
dc.contributor.authorMorin, Cory Williamen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractRecently researchers have recognized the potential effects of climate variability and climate change on infectious disease ecology. Mosquito-borne diseases are of considerable concern due to their reliance on temperature to regulate vector reproduction, survival, and vector and agent development. Precipitation is also influential because it helps maintain habitat for immature mosquitoes. The interactions between climate, vector, and agent are complex, however, and thus assessing the overall impact of climate on disease occurrence is difficult. Discerning the influence of climate on mosquito-borne diseases requires an interdisciplinary synthesis of knowledge about the relationships between components of the disease system and analysis techniques that account for the individual and interacting roles that each element contributes to the ecology of the disease. In this dissertation, climate and climate change influences on dengue fever and West Nile virus are identified through process based modeling to simulate changes in vector and viral transmission dynamics. Analysis of the literature pertaining to climate influences on dengue virus ecology reveals that climate variables often interact interdependently to influence dengue virus transmission. Statistical techniques correlating or modeling climate-dengue relationships are often inconsistent and location specific. Process based modeling has been employed to better simulate the intricacies and non-linear dynamics involved, but most models focus only on vector populations. Therefore, models should incorporate viral development and transmission components to better simulate dengue virus ecology. A model of West Nile virus vector dynamics across the southern United States reveals that impacts from climate change are very location and context-specific. While temperatures generally increase the season length of vector activity, changes in precipitation and evapotranspiration dynamics often lead to lower summer mosquito populations and limited population development in water-stressed areas. A simulation of dengue fever cases in San Juan County, Puerto Rico with a coupled vector-epidemiological model showed strong agreement when compared with reported case data (Willmott's d = 0.90 and r2 = 0.71). The model indicates that certain climate variables became disease limiting during specific times of the year. Temperature limits virus transmission during the winter by slowing viral development while lower precipitation limits spring transmission by suppressing vector populations.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectEcologyen_US
dc.subjectEnvironmenten_US
dc.subjectInfectiousen_US
dc.subjectVectorsen_US
dc.subjectGeographyen_US
dc.subjectClimateen_US
dc.subjectDiseaseen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineGeographyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorComrie, Andrew C.en_US
dc.contributor.committeemembervan Leeuwen, Willem J. D.en_US
dc.contributor.committeememberErnst, Kacey C.en_US
dc.contributor.committeememberRiehle, Michaelen_US
dc.contributor.committeememberComrie, Andrew C.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.