Persistent Link:
http://hdl.handle.net/10150/238648
Title:
Non Imaging Applications of Volume Diffractive Optics
Author:
Castillo Aguilella, Jose Elias
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 19-Jul-2013
Abstract:
This dissertation presents theoretical and experimental work on non-imaging diffractive optics. The new use of devices based on this work is shown and grouped by application. First, devices for telecommunications applications are described: volume reflection Bragg gratings were designed for wavelength division multiplexing (WDM) and optical code division multiple access (OCDMA) applications. Two devices based on reflection Bragg filters are presented in this work. Tunable phenanthrenquinone-doped poly(methyl methacrylate) (PQ-PMMA) edge illuminated Bragg filters were found to be wavelength selectable via the application of a constant stress, either in tension or compression, allowing for a wavelength tuning of ~4.5nm. Silica on silicon, multichannel parallel anti-symmetric waveguide Bragg gratings (AWBG) are theoretically demonstrated based on coupled mode theory, mode overlap with parallel gratings and previous experimental results with single channel AWBGs. These parallel AWBG devices are shown to be scalable, with the device length increasing as the number of parallel channels increases. Second, diffractive devices based on flexible, volume transmission holograms are presented and demonstrated for low level solar concentration in latitude mounted applications. The film, arrayed next to the solar cells, directs the incoming solar irradiance incident upon it towards the solar cell. These holograms are shown to work for both silicon and Copper Indium Gallium diSelenide (CIGS) solar cells. New solar holographic designs for non-latitude mounting applications are also shown for common photovoltaic materials. The holographic designs are based on approximate coupled wave analysis (ACWA), the latitude and mounting angle of the application, the spectral response of the photovoltaic material, and the seasonal and daily sun angle position. The simulation work suggests that holograms optimized for non-latitude mounted applications contribute proportionately more energy throughout the year than earlier latitude mounted hologram designs.
Type:
text; Electronic Dissertation
Keywords:
Optical Communications; Photovoltaic; Solar; Thermal; Electrical & Computer Engineering; Diffractive Optics; Hologram
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Electrical & Computer Engineering
Degree Grantor:
University of Arizona
Advisor:
Kostuk, Raymond K.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleNon Imaging Applications of Volume Diffractive Opticsen_US
dc.creatorCastillo Aguilella, Jose Eliasen_US
dc.contributor.authorCastillo Aguilella, Jose Eliasen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 19-Jul-2013en_US
dc.description.abstractThis dissertation presents theoretical and experimental work on non-imaging diffractive optics. The new use of devices based on this work is shown and grouped by application. First, devices for telecommunications applications are described: volume reflection Bragg gratings were designed for wavelength division multiplexing (WDM) and optical code division multiple access (OCDMA) applications. Two devices based on reflection Bragg filters are presented in this work. Tunable phenanthrenquinone-doped poly(methyl methacrylate) (PQ-PMMA) edge illuminated Bragg filters were found to be wavelength selectable via the application of a constant stress, either in tension or compression, allowing for a wavelength tuning of ~4.5nm. Silica on silicon, multichannel parallel anti-symmetric waveguide Bragg gratings (AWBG) are theoretically demonstrated based on coupled mode theory, mode overlap with parallel gratings and previous experimental results with single channel AWBGs. These parallel AWBG devices are shown to be scalable, with the device length increasing as the number of parallel channels increases. Second, diffractive devices based on flexible, volume transmission holograms are presented and demonstrated for low level solar concentration in latitude mounted applications. The film, arrayed next to the solar cells, directs the incoming solar irradiance incident upon it towards the solar cell. These holograms are shown to work for both silicon and Copper Indium Gallium diSelenide (CIGS) solar cells. New solar holographic designs for non-latitude mounting applications are also shown for common photovoltaic materials. The holographic designs are based on approximate coupled wave analysis (ACWA), the latitude and mounting angle of the application, the spectral response of the photovoltaic material, and the seasonal and daily sun angle position. The simulation work suggests that holograms optimized for non-latitude mounted applications contribute proportionately more energy throughout the year than earlier latitude mounted hologram designs.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectOptical Communicationsen_US
dc.subjectPhotovoltaicen_US
dc.subjectSolaren_US
dc.subjectThermalen_US
dc.subjectElectrical & Computer Engineeringen_US
dc.subjectDiffractive Opticsen_US
dc.subjectHologramen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical & Computer Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKostuk, Raymond K.en_US
dc.contributor.committeememberMelde, Kathleenen_US
dc.contributor.committeememberDjorkjevic, Ivanen_US
dc.contributor.committeememberKostuk, Raymond K.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.