Transverse Energy Flow in the Underlying Event in the Proton-Proton Collisions at √s = 7 TeV with the ATLAS Calorimeter

Persistent Link:
http://hdl.handle.net/10150/232452
Title:
Transverse Energy Flow in the Underlying Event in the Proton-Proton Collisions at √s = 7 TeV with the ATLAS Calorimeter
Author:
Paleari, Chiara
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The European Organization for Nuclear Research (CERN) operates the world's largest and highest energy proton-proton collider at a center of mass energy of √s = 7 TeV, the Large Hadron Collider (LHC). ATLAS is one of the four detectors operating at the LHC. The Underlying Event (UE), which is an unavoidable background at any hadron collider, includes particles from various sources generated in each proton collision. The particle flow in the underlying event is characterized by low transverse energies reflecting the long range character of the individual processes generating them. This regime cannot be described by the usual perturbative models provided by Quantum Chromodynamics (QCD), the theory of the strong force. To model this flow, phenomenological models have to be applied, as provided by Monte Carlo simulations. In this work I define new discriminating variables to constrain these UE models in the new kinematical regime available at LHC. Using calorimeter data from the ATLAS experiment, several Monte Carlo models are tested by comparing the data to these predictions for three different final states (minimum bias, di-jet and direct photon production). The experimental data are fully unfolded to the hadron level within the full acceptance of the ATLAS detector, thus for the first time including the forward direction in hadron collisions. The final results are presented in the context of previous measurements on the characteristics of the strong force in the proton, in deep inelastic lepton-proton scattering.
Type:
text; Electronic Dissertation
Keywords:
Physics
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Rutherfoord, John

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleTransverse Energy Flow in the Underlying Event in the Proton-Proton Collisions at √s = 7 TeV with the ATLAS Calorimeteren_US
dc.creatorPaleari, Chiaraen_US
dc.contributor.authorPaleari, Chiaraen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe European Organization for Nuclear Research (CERN) operates the world's largest and highest energy proton-proton collider at a center of mass energy of √s = 7 TeV, the Large Hadron Collider (LHC). ATLAS is one of the four detectors operating at the LHC. The Underlying Event (UE), which is an unavoidable background at any hadron collider, includes particles from various sources generated in each proton collision. The particle flow in the underlying event is characterized by low transverse energies reflecting the long range character of the individual processes generating them. This regime cannot be described by the usual perturbative models provided by Quantum Chromodynamics (QCD), the theory of the strong force. To model this flow, phenomenological models have to be applied, as provided by Monte Carlo simulations. In this work I define new discriminating variables to constrain these UE models in the new kinematical regime available at LHC. Using calorimeter data from the ATLAS experiment, several Monte Carlo models are tested by comparing the data to these predictions for three different final states (minimum bias, di-jet and direct photon production). The experimental data are fully unfolded to the hadron level within the full acceptance of the ATLAS detector, thus for the first time including the forward direction in hadron collisions. The final results are presented in the context of previous measurements on the characteristics of the strong force in the proton, in deep inelastic lepton-proton scattering.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectPhysicsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRutherfoord, Johnen_US
dc.contributor.committeememberFleming, Seanen_US
dc.contributor.committeememberSu, Shufangen_US
dc.contributor.committeememberJohns, Kennethen_US
dc.contributor.committeememberLoch, Peteren_US
dc.contributor.committeememberRutherfoord, Johnen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.