The Structure and Function of Subalpine Ecosystems in the Face of Climate Change

Persistent Link:
http://hdl.handle.net/10150/228495
Title:
The Structure and Function of Subalpine Ecosystems in the Face of Climate Change
Author:
Lamanna, Christine Anne
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 27-Apr-2014
Abstract:
Subalpine ecosystems are experiencing rapid changes in snow pack, temperature, and precipitation regime as a result of anthropogenic climate forcing. These changes in climate can have a profound effect on subalpine ecosystem structure and functioning, which may ultimately feed back to climate change. In this study, I examined the response of the subalpine meadow plant communities at the Rocky Mountain Biological Laboratory to natural and simulated climate change. First, I looked at whether changes in growing season precipitation or temperature regime would have the larger effect on subalpine ecosystem carbon flux. In a simulated warming experiment, changes in growing season precipitation had a tenfold larger effect on cumulative carbon flux than did the warming treatment. Along a natural climatic and elevational gradient, precipitation stimulates carbon uptake, particularly at higher elevations. Given projected decreases in summer precipitation in the high elevation Rockies, we predict a 20% decrease in carbon uptake from subalpine meadows. Second, I compared the taxonomic, phylogenetic and functional structure of plant communities along an elevational gradient to infer which climatic and biotic factors influence community assembly at each elevation. Floral and phenology traits become overdispersed at high elevation, mirroring phylogenetic relatedness, and suggesting pressure to diversify to attract pollinators during the abbreviated growing season. At the same time, leaf functional traits become clustered at high elevation, indicating multiple opposing assembly mechanisms in subalpine communities. Finally, I studied the natural history of sagebrush, Artemisia tridentate ssp. vaseyana, at its elevational range limit in subalpine meadows. In particular, I focused on the importance of warming and species interactions in elevational advance of the species. I found that facilitation by neighboring forbs was critical for sagebrush seedling survival, decreasing mortality by 75%. Seedling mortality was overwhelmingly due to desiccation of seedlings; therefore, neighboring forbs moderate temperature and water stress for seedlings. Despite the extremely limited growing season at high elevation caused by subfreezing temperatures, subalpine ecosystem structure and function are closely tied to water availability during the growing season. Therefore, improved predictions of future precipitation regimes over the Rocky Mountains will be our best tool for conservation of these fragile habitats.
Type:
text; Electronic Dissertation
Keywords:
NEE; phylogenetic diversity; sagebrush; subalpine; Ecology & Evolutionary Biology; elevational gradient; functional diversity
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Ecology & Evolutionary Biology
Degree Grantor:
University of Arizona
Advisor:
Enquist, Brian J.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe Structure and Function of Subalpine Ecosystems in the Face of Climate Changeen_US
dc.creatorLamanna, Christine Anneen_US
dc.contributor.authorLamanna, Christine Anneen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 27-Apr-2014en_US
dc.description.abstractSubalpine ecosystems are experiencing rapid changes in snow pack, temperature, and precipitation regime as a result of anthropogenic climate forcing. These changes in climate can have a profound effect on subalpine ecosystem structure and functioning, which may ultimately feed back to climate change. In this study, I examined the response of the subalpine meadow plant communities at the Rocky Mountain Biological Laboratory to natural and simulated climate change. First, I looked at whether changes in growing season precipitation or temperature regime would have the larger effect on subalpine ecosystem carbon flux. In a simulated warming experiment, changes in growing season precipitation had a tenfold larger effect on cumulative carbon flux than did the warming treatment. Along a natural climatic and elevational gradient, precipitation stimulates carbon uptake, particularly at higher elevations. Given projected decreases in summer precipitation in the high elevation Rockies, we predict a 20% decrease in carbon uptake from subalpine meadows. Second, I compared the taxonomic, phylogenetic and functional structure of plant communities along an elevational gradient to infer which climatic and biotic factors influence community assembly at each elevation. Floral and phenology traits become overdispersed at high elevation, mirroring phylogenetic relatedness, and suggesting pressure to diversify to attract pollinators during the abbreviated growing season. At the same time, leaf functional traits become clustered at high elevation, indicating multiple opposing assembly mechanisms in subalpine communities. Finally, I studied the natural history of sagebrush, Artemisia tridentate ssp. vaseyana, at its elevational range limit in subalpine meadows. In particular, I focused on the importance of warming and species interactions in elevational advance of the species. I found that facilitation by neighboring forbs was critical for sagebrush seedling survival, decreasing mortality by 75%. Seedling mortality was overwhelmingly due to desiccation of seedlings; therefore, neighboring forbs moderate temperature and water stress for seedlings. Despite the extremely limited growing season at high elevation caused by subfreezing temperatures, subalpine ecosystem structure and function are closely tied to water availability during the growing season. Therefore, improved predictions of future precipitation regimes over the Rocky Mountains will be our best tool for conservation of these fragile habitats.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectNEEen_US
dc.subjectphylogenetic diversityen_US
dc.subjectsagebrushen_US
dc.subjectsubalpineen_US
dc.subjectEcology & Evolutionary Biologyen_US
dc.subjectelevational gradienten_US
dc.subjectfunctional diversityen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineEcology & Evolutionary Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorEnquist, Brian J.en_US
dc.contributor.committeememberSaleska, Scott R.en_US
dc.contributor.committeememberBronstein, Judith L.en_US
dc.contributor.committeememberArcher, Steven R.en_US
dc.contributor.committeememberKueppers, Laraen_US
dc.contributor.committeememberEnquist, Brian J.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.