Exploring Students' Interactions, Arguments, and Reflections in General Chemistry Laboratories with Different Levels of Inquiry

Persistent Link:
http://hdl.handle.net/10150/228131
Title:
Exploring Students' Interactions, Arguments, and Reflections in General Chemistry Laboratories with Different Levels of Inquiry
Author:
Xu, Haozhi
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Students' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis,; cognitive processing,; and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work.In general, our results elicit trends and highlight issues that can help instructors and curriculum developers identify strategies to better support and scaffold productive engagement in the laboratory. Our results suggest that careful design and implementation of instructional interventions may be needed to maximize the learning effects of the more open-ended inquiry activities at the college level.
Type:
text; Electronic Dissertation
Keywords:
Chemistry
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Talanquer, Vicente

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleExploring Students' Interactions, Arguments, and Reflections in General Chemistry Laboratories with Different Levels of Inquiryen_US
dc.creatorXu, Haozhien_US
dc.contributor.authorXu, Haozhien_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractStudents' learning in inquiry-based investigations has drawn considerable attention of the science education community. Inquiry activities can be viewed as knowledge construction processes in which students are expected to develop conceptual understanding and critical thinking abilities. Our study aimed to explore the effect of experiments with different levels of inquiry on students' interactions in the laboratory setting, as well as on students' written arguments and reflections. Our results are based on direct observations of group work in college general chemistry laboratories and analysis of associated written lab reports. The analysis of students' interactions in the laboratory was approached from three major analytic dimensions: Functional analysis,; cognitive processing,; and social processing. According to our results, higher levels of inquiry were associated with an increase in the relative frequency of episodes where students were engaged in proposing ideas versus asking and answering each others' questions. Higher levels of inquiry also favored episodes in which experimental work was approached in a more exploratory (versus procedural) manner. However, no major changes were observed in the extent to which students were engaged in either interpretive discussions of central scientific concepts and ideas. As part of our study we were also interested in characterizing the effects of experiments involving different levels of inquiry on the structure and adequacy of university general chemistry students' written arguments, as well as on the nature of their reflections about laboratory work. Our findings indicate that the level of inquiry of the observed experiments had no significant impact on the structure or adequacy of arguments generated by students. However, the level of inquiry of the experiments seemed to have a major impact on several areas of students' written reflections about laboratory work.In general, our results elicit trends and highlight issues that can help instructors and curriculum developers identify strategies to better support and scaffold productive engagement in the laboratory. Our results suggest that careful design and implementation of instructional interventions may be needed to maximize the learning effects of the more open-ended inquiry activities at the college level.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectChemistryen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorTalanquer, Vicenteen_US
dc.contributor.committeememberChristie, Hamishen_US
dc.contributor.committeememberNjardarson, Jonen_US
dc.contributor.committeememberTomanek, Debraen_US
dc.contributor.committeememberNovodvorsky, Ingriden_US
dc.contributor.committeememberTalanquer, Vicenteen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.