Experience-Dependent Network Modification in the Medial Temporal Lobe

Persistent Link:
http://hdl.handle.net/10150/223358
Title:
Experience-Dependent Network Modification in the Medial Temporal Lobe
Author:
Thome, Alexander
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Release after 05-Apr-2013
Abstract:
Theoretical models of information storage in the brain have suggested that neurons may undergo an experience-dependent tuning or sharpening of their representations in order to maximize the amount of information that can be stored. Changes in the tuning profiles of neurons have been demonstrated to occur when animals must learn perceptual discriminations, however, whether similar changes occur in the absence of behavioral demands is unclear. To address these questions, the activity of simultaneously recorded medial temporal lobe (MTL) neurons was studied in relation to a passive visual recognition memory task. The structure of this task was such that it allowed for a comparison between novelty related responses as well as tuning properties of individual neurons. A total of 565 well isolated single neurons were recorded. The first contribution of this dissertation is the finding of a dissociation between different medial temporal lobe regions such that neurons in temporal area F (TF), but not perirhinal cortex (PRC) or the hippocampus, show an experience-dependent change in their stimulus selectivity. This finding indicates that tuning of stimulus representations may be an effective mechanism for maximizing information storage in some brain regions. The absence of stimulus tuning in higher level association regions (i.e. TF and PRC) suggests that tuning in these regions may be disadvantageous due to the need to construct unified representations across sensory modalities. A complimentary question to the question of network storage capacity is how networks avoid saturation in the connections between neurons. The second contribution of this dissertation is the finding that there exists a decrease in the magnitude of the short time scale correlations between pairs of neurons; suggesting that networks reduce the number of connections between neurons as a stimulus becomes familiar. Gamma oscillations have been proposed to be the mechanism by which groups of neurons coordinate their activity. However, network coordination has only been indirectly measured. The final contribution of this dissertation is the finding that the magnitude of gamma oscillations is strongly correlated with enhanced magnitude of correlations between neurons.
Type:
text; Electronic Dissertation
Keywords:
Memory; Single-Unit; Neuroscience; Correlations; Medial Temporal Lobe
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Neuroscience
Degree Grantor:
University of Arizona
Advisor:
Barnes, Carol A.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleExperience-Dependent Network Modification in the Medial Temporal Lobeen_US
dc.creatorThome, Alexanderen_US
dc.contributor.authorThome, Alexanderen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseRelease after 05-Apr-2013en_US
dc.description.abstractTheoretical models of information storage in the brain have suggested that neurons may undergo an experience-dependent tuning or sharpening of their representations in order to maximize the amount of information that can be stored. Changes in the tuning profiles of neurons have been demonstrated to occur when animals must learn perceptual discriminations, however, whether similar changes occur in the absence of behavioral demands is unclear. To address these questions, the activity of simultaneously recorded medial temporal lobe (MTL) neurons was studied in relation to a passive visual recognition memory task. The structure of this task was such that it allowed for a comparison between novelty related responses as well as tuning properties of individual neurons. A total of 565 well isolated single neurons were recorded. The first contribution of this dissertation is the finding of a dissociation between different medial temporal lobe regions such that neurons in temporal area F (TF), but not perirhinal cortex (PRC) or the hippocampus, show an experience-dependent change in their stimulus selectivity. This finding indicates that tuning of stimulus representations may be an effective mechanism for maximizing information storage in some brain regions. The absence of stimulus tuning in higher level association regions (i.e. TF and PRC) suggests that tuning in these regions may be disadvantageous due to the need to construct unified representations across sensory modalities. A complimentary question to the question of network storage capacity is how networks avoid saturation in the connections between neurons. The second contribution of this dissertation is the finding that there exists a decrease in the magnitude of the short time scale correlations between pairs of neurons; suggesting that networks reduce the number of connections between neurons as a stimulus becomes familiar. Gamma oscillations have been proposed to be the mechanism by which groups of neurons coordinate their activity. However, network coordination has only been indirectly measured. The final contribution of this dissertation is the finding that the magnitude of gamma oscillations is strongly correlated with enhanced magnitude of correlations between neurons.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMemoryen_US
dc.subjectSingle-Uniten_US
dc.subjectNeuroscienceen_US
dc.subjectCorrelationsen_US
dc.subjectMedial Temporal Lobeen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineNeuroscienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBarnes, Carol A.en_US
dc.contributor.committeememberNadel, Lynnen_US
dc.contributor.committeememberGothard, Katalinen_US
dc.contributor.committeememberFuglevand, Andrewen_US
dc.contributor.committeememberZinsmaier, Konraden_US
dc.contributor.committeememberBarnes, Carol A.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.