Extracellular Regulation of Nitric Oxide Signaling via Soluble Guanylate Cyclase

Persistent Link:
http://hdl.handle.net/10150/223312
Title:
Extracellular Regulation of Nitric Oxide Signaling via Soluble Guanylate Cyclase
Author:
Ramanathan, Saumya
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Nitric Oxide (NO) regulates cardiovascular homeostasis by binding to soluble guanylate cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca²⁺]ᵢ) and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, I show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells, and that inhibition requires an increase in [Ca²⁺]ᵢ. Using digital imaging microscopy on live cells, I further show that E3CaG1 binding results in a substantial increase in [Ca²⁺]ᵢ, up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca²⁺]ᵢ, also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca²⁺ remains inhibited, while addition of kinase inhibitors staurosporine, genistein, PP1 or PP2 reverse inhibition, indicating inhibition likely involves a tyrosine kinase, more specifically, a src family kinase. Rat sGC is also inhibited by lysates supplemented with Ca²⁺, suggesting that the site of modification is at an evolutionarily conserved residue. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca²⁺]ᵢ in response to NO, inducing vasodilation, but is also inhibited by high [Ca²⁺]ᵢ, providing a fine balance between signals for vasodilation and vasoconstriction.
Type:
text; Electronic Dissertation
Keywords:
Molecular & Cellular Biology
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Molecular & Cellular Biology
Degree Grantor:
University of Arizona
Advisor:
Montfort, William R.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleExtracellular Regulation of Nitric Oxide Signaling via Soluble Guanylate Cyclaseen_US
dc.creatorRamanathan, Saumyaen_US
dc.contributor.authorRamanathan, Saumyaen_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractNitric Oxide (NO) regulates cardiovascular homeostasis by binding to soluble guanylate cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca²⁺]ᵢ) and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, I show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells, and that inhibition requires an increase in [Ca²⁺]ᵢ. Using digital imaging microscopy on live cells, I further show that E3CaG1 binding results in a substantial increase in [Ca²⁺]ᵢ, up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca²⁺]ᵢ, also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca²⁺ remains inhibited, while addition of kinase inhibitors staurosporine, genistein, PP1 or PP2 reverse inhibition, indicating inhibition likely involves a tyrosine kinase, more specifically, a src family kinase. Rat sGC is also inhibited by lysates supplemented with Ca²⁺, suggesting that the site of modification is at an evolutionarily conserved residue. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca²⁺]ᵢ in response to NO, inducing vasodilation, but is also inhibited by high [Ca²⁺]ᵢ, providing a fine balance between signals for vasodilation and vasoconstriction.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMolecular & Cellular Biologyen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMolecular & Cellular Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorMontfort, William R.en_US
dc.contributor.committeememberCamenisch, Todd D.en_US
dc.contributor.committeememberMiesfeld, Roger L.en_US
dc.contributor.committeememberTsao, Tsu-Shuenen_US
dc.contributor.committeememberWeinert, Ted A.en_US
dc.contributor.committeememberMontfort, William R.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.