Cavity Enhanced THz Generation in Nonlinear Crystals Pumped by Near-IR Fiber Lasers

Persistent Link:
http://hdl.handle.net/10150/222833
Title:
Cavity Enhanced THz Generation in Nonlinear Crystals Pumped by Near-IR Fiber Lasers
Author:
Petersen, Eliot
Issue Date:
2012
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A coherent optical THz (1.5 THz, 200 µm) source was developed based on pulsed, near IR, fiber lasers, and frequency mixing in nonlinear crystals. The generated THz frequency is determined by the difference frequency of two high peak power pulsed fiber lasers at 1550 nm and 1538 nm. When incident to the crystal, the near IR lasers induce a polarization at their beat frequency which generates the THz radiation. The pulsed fiber lasers are single transverse mode, have high pulse energy and peak powers of 0.38 mJ and 128 kW respectively. They are transform limited at a few ns in duration with very good beam quality of M² ≈ 1.2. The pulse seed was created by modulating a constant laser beam with an electro-optic modulator. An arbitrary waveform generator was used to pre-shape these pulses to compensate for pulse distortion caused by pump gain depletion in the subsequent fiber amplifiers. Pre-amplifiers were constructed using commercial erbium doped silica fiber. Special, highly doped, large core, phosphate fiber was developed in-house to further amplify the pulses, while avoiding nonlinear scattering processes such as stimulated Brillouin scattering and stimulated Raman scattering. THz generation was achieved in both ZnGeP₂ and GaP which were chosen based on their low pump and THz absorption, as well as high nonlinear coefficient. Angle tuning was used to phase match all three optical frequencies in ZnGeP₂ thanks to its birefringence. Layers of GaP ~500 µm thick were pressed together alternately rotated 180° around the normal to quasi-phase match the pump and THz frequencies. To increase the efficiency of the THz generation an external optical cavity was used to enhance and recycle the IR pump pulses. The nonlinear crystal was placed inside the cavity and 151 times enhancement of THz power was observed.
Type:
text; Electronic Dissertation
Keywords:
Nonlinear; Pulsed Laser; THz; Physics; Difference Frequency Generation; Fiber Laser
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Peyghambarian, Nasser

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCavity Enhanced THz Generation in Nonlinear Crystals Pumped by Near-IR Fiber Lasersen_US
dc.creatorPetersen, Elioten_US
dc.contributor.authorPetersen, Elioten_US
dc.date.issued2012-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA coherent optical THz (1.5 THz, 200 µm) source was developed based on pulsed, near IR, fiber lasers, and frequency mixing in nonlinear crystals. The generated THz frequency is determined by the difference frequency of two high peak power pulsed fiber lasers at 1550 nm and 1538 nm. When incident to the crystal, the near IR lasers induce a polarization at their beat frequency which generates the THz radiation. The pulsed fiber lasers are single transverse mode, have high pulse energy and peak powers of 0.38 mJ and 128 kW respectively. They are transform limited at a few ns in duration with very good beam quality of M² ≈ 1.2. The pulse seed was created by modulating a constant laser beam with an electro-optic modulator. An arbitrary waveform generator was used to pre-shape these pulses to compensate for pulse distortion caused by pump gain depletion in the subsequent fiber amplifiers. Pre-amplifiers were constructed using commercial erbium doped silica fiber. Special, highly doped, large core, phosphate fiber was developed in-house to further amplify the pulses, while avoiding nonlinear scattering processes such as stimulated Brillouin scattering and stimulated Raman scattering. THz generation was achieved in both ZnGeP₂ and GaP which were chosen based on their low pump and THz absorption, as well as high nonlinear coefficient. Angle tuning was used to phase match all three optical frequencies in ZnGeP₂ thanks to its birefringence. Layers of GaP ~500 µm thick were pressed together alternately rotated 180° around the normal to quasi-phase match the pump and THz frequencies. To increase the efficiency of the THz generation an external optical cavity was used to enhance and recycle the IR pump pulses. The nonlinear crystal was placed inside the cavity and 151 times enhancement of THz power was observed.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectNonlinearen_US
dc.subjectPulsed Laseren_US
dc.subjectTHzen_US
dc.subjectPhysicsen_US
dc.subjectDifference Frequency Generationen_US
dc.subjectFiber Laseren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPeyghambarian, Nasseren_US
dc.contributor.committeememberShi, Weien_US
dc.contributor.committeememberCronin, Alexen_US
dc.contributor.committeememberRutherfoord, Johnen_US
dc.contributor.committeememberVisscher, Koenen_US
dc.contributor.committeememberPeyghambarian, Nasseren_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.