The University of Arizona Campus Repository
>
UA Graduate and Undergraduate Research
>
UA Theses and Dissertations
>
Dissertations
>

# Resolutions of Collinearity Among Four Points in the Complex Projective Plane

- Persistent Link:
- http://hdl.handle.net/10150/222831
- Title:
- Resolutions of Collinearity Among Four Points in the Complex Projective Plane
- Author:
- Issue Date:
- 2012
- Publisher:
- Rights:
- Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
- Abstract:
- By a theorem of Mnëv, every possible algebraic singularity occurs in certain incidence subspaces of (P²)ⁿ x (P²)ᵐ for some n, m. These incidence subspaces are defined by conditions that include (1) certain points must lie on certain lines, (2) i of the n points coincide, and (3) j of the m lines coincide. To capture these incidence spaces, we define a configuration space Xᵒ(n) ⊂ (P²)n x (P²)^(n/2) along with its closure X(n), which is singular for n ≥ 3. The open strata Xᵒ(n) parameterizes configurations of n points in P² that are in general linear position. When n = 3, a smooth compactification of Xn was discovered by Schubert and refined by Semple in 1954. In order to desingularize X₃, we add the net of conics through the three points. This is equivalent to blowing up at one of three strata θᵢ (Theorem 2.12). Some of the possible blowups that would desingularize X₃ fit into the framework of the Atiyah flop. There are forgetful morphisms Fᵢ : X₄ → X₃ that omit the ith point and the three lines incident on the ith point. The space X₄ is homogeneously covered by open affines. Each open affine has a coordinate ring generated by coordinates pulled back from a flag variety and edge coordinates indexed by the edges of a graph Γ (Proposition 4.33). The relations are given by certain linear relations, quadratic relations that come from the triangular subconfigurations, and cubic relations indexed by hexagons in the graph Γ (Proposition 4.37). These generators and relations are used to prove that blowing up X₄ at F(j)⁻¹(ε); F(k)⁻¹(ε); F(l)⁻¹(ε); and Fᵢ⁻¹(τ), where ε and τ are strata in X₃, results in a smooth space (Theorem 5.24) whose boundary consists of smooth divisorial components (Theorem 5.29).
- Type:
- text; Electronic Dissertation
- Keywords:
- Degree Name:
- Ph.D.
- Degree Level:
- doctoral
- Degree Program:
- Degree Grantor:
- University of Arizona
- Advisor:

# Full metadata record

DC Field | Value | Language |
---|---|---|

dc.language.iso | en | en_US |

dc.title | Resolutions of Collinearity Among Four Points in the Complex Projective Plane | en_US |

dc.creator | Piercey, Victor Ian | en_US |

dc.contributor.author | Piercey, Victor Ian | en_US |

dc.date.issued | 2012 | - |

dc.publisher | The University of Arizona. | en_US |

dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en_US |

dc.description.abstract | By a theorem of Mnëv, every possible algebraic singularity occurs in certain incidence subspaces of (P²)ⁿ x (P²)ᵐ for some n, m. These incidence subspaces are defined by conditions that include (1) certain points must lie on certain lines, (2) i of the n points coincide, and (3) j of the m lines coincide. To capture these incidence spaces, we define a configuration space Xᵒ(n) ⊂ (P²)n x (P²)^(n/2) along with its closure X(n), which is singular for n ≥ 3. The open strata Xᵒ(n) parameterizes configurations of n points in P² that are in general linear position. When n = 3, a smooth compactification of Xn was discovered by Schubert and refined by Semple in 1954. In order to desingularize X₃, we add the net of conics through the three points. This is equivalent to blowing up at one of three strata θᵢ (Theorem 2.12). Some of the possible blowups that would desingularize X₃ fit into the framework of the Atiyah flop. There are forgetful morphisms Fᵢ : X₄ → X₃ that omit the ith point and the three lines incident on the ith point. The space X₄ is homogeneously covered by open affines. Each open affine has a coordinate ring generated by coordinates pulled back from a flag variety and edge coordinates indexed by the edges of a graph Γ (Proposition 4.33). The relations are given by certain linear relations, quadratic relations that come from the triangular subconfigurations, and cubic relations indexed by hexagons in the graph Γ (Proposition 4.37). These generators and relations are used to prove that blowing up X₄ at F(j)⁻¹(ε); F(k)⁻¹(ε); F(l)⁻¹(ε); and Fᵢ⁻¹(τ), where ε and τ are strata in X₃, results in a smooth space (Theorem 5.24) whose boundary consists of smooth divisorial components (Theorem 5.29). | en_US |

dc.type | text | en_US |

dc.type | Electronic Dissertation | en_US |

dc.subject | Mathematics | en_US |

thesis.degree.name | Ph.D. | en_US |

thesis.degree.level | doctoral | en_US |

thesis.degree.discipline | Graduate College | en_US |

thesis.degree.discipline | Mathematics | en_US |

thesis.degree.grantor | University of Arizona | en_US |

dc.contributor.advisor | Hu, Yi | en_US |

dc.contributor.committeemember | Hu, Yi | en_US |

dc.contributor.committeemember | Joshi, Kirti | en_US |

dc.contributor.committeemember | McCallum, William | en_US |

dc.contributor.committeemember | Pickrell, Doug | en_US |

All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.