Persistent Link:
http://hdl.handle.net/10150/214972
Title:
Examination of New Chemistries to Control Powdery Mildew of Cantaloupe in 2002
Author:
Matheron, Michael E.; Porchas, Martin
Issue Date:
Aug-2003
Publisher:
College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ)
Journal:
Vegetable Report
Abstract:
Powdery mildew can occur on melons annually in Arizona. Podosphaera xanthii (Sphaerotheca fuliginea) is the plant pathogenic fungus that causes powdery mildew of cucurbits, such as cantaloupe, honeydew, watermelon, cucumber and squash. When environmental conditions are favorable, disease incidence and severity can reach economically significant levels. Development of powdery mildew on melons is favored by moderate temperatures and relative humidity, succulent plant growth and reduced light intensity brought about by a dense plant canopy. Potential new fungicides were evaluated and compared to existing chemicals for control of powdery mildew of cantaloupe in a field trial conducted during the spring of 2002 at the Yuma Agricultural Center. Among treatments, the degree of powdery mildew control ranged from minimal to essentially complete. One notable observation was the relative decrease in performance of Flint compared to earlier field trials. An isolate of the fungus from this trial was tested at Cornell University and found to be less sensitive to Flint compared to other isolates of the pathogen not previously exposed to this fungicide. This potential development of resistance by the pathogen to Flint will be examined in further studies. A moderately high level of disease had developed by crop maturity (Jun 25) on non-treated plants. The better performing treatments included Cabrio, Flint+pHortress, Foliar Supreme, Microthiol Disperss, Pristine, Procure, Quadris+Latron B-1956, Quadris+LatronB- 1956+Actigard, Quinoxyfen, Rally, Topsin M+Trilogy, and UCC-A1639. The potential availability of chemistries with new modes of action could help improve overall control of powdery mildew as well as facilitate the implementation of effective fungicide resistance management strategies.
Keywords:
Agriculture -- Arizona; Vegetables -- Arizona; Vegetables -- Plant pathogens
Series/Report no.:
AZ1323; Series P-136

Full metadata record

DC FieldValue Language
dc.titleExamination of New Chemistries to Control Powdery Mildew of Cantaloupe in 2002en_US
dc.contributor.authorMatheron, Michael E.en_US
dc.contributor.authorPorchas, Martinen_US
dc.date.issued2003-08-
dc.publisherCollege of Agriculture and Life Sciences, University of Arizona (Tucson, AZ)en_US
dc.identifier.journalVegetable Reporten_US
dc.description.abstractPowdery mildew can occur on melons annually in Arizona. Podosphaera xanthii (Sphaerotheca fuliginea) is the plant pathogenic fungus that causes powdery mildew of cucurbits, such as cantaloupe, honeydew, watermelon, cucumber and squash. When environmental conditions are favorable, disease incidence and severity can reach economically significant levels. Development of powdery mildew on melons is favored by moderate temperatures and relative humidity, succulent plant growth and reduced light intensity brought about by a dense plant canopy. Potential new fungicides were evaluated and compared to existing chemicals for control of powdery mildew of cantaloupe in a field trial conducted during the spring of 2002 at the Yuma Agricultural Center. Among treatments, the degree of powdery mildew control ranged from minimal to essentially complete. One notable observation was the relative decrease in performance of Flint compared to earlier field trials. An isolate of the fungus from this trial was tested at Cornell University and found to be less sensitive to Flint compared to other isolates of the pathogen not previously exposed to this fungicide. This potential development of resistance by the pathogen to Flint will be examined in further studies. A moderately high level of disease had developed by crop maturity (Jun 25) on non-treated plants. The better performing treatments included Cabrio, Flint+pHortress, Foliar Supreme, Microthiol Disperss, Pristine, Procure, Quadris+Latron B-1956, Quadris+LatronB- 1956+Actigard, Quinoxyfen, Rally, Topsin M+Trilogy, and UCC-A1639. The potential availability of chemistries with new modes of action could help improve overall control of powdery mildew as well as facilitate the implementation of effective fungicide resistance management strategies.en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectVegetables -- Arizonaen_US
dc.subjectVegetables -- Plant pathogensen_US
dc.identifier.urihttp://hdl.handle.net/10150/214972-
dc.relation.ispartofseriesAZ1323en_US
dc.relation.ispartofseriesSeries P-136en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.