Persistent Link:
http://hdl.handle.net/10150/209597
Title:
Dry Matter Accumulation by Upland and Pima Cotton
Author:
Unrah, B. L.; Silvertooth, J. C.; Steger, A. J.; Norton, E. R.
Issue Date:
Mar-1994
Publisher:
College of Agriculture, University of Arizona (Tucson, AZ)
Journal:
Cotton: A College of Agriculture Report
Abstract:
Several investigations of dry matter accumulation by Upland cotton (Gossvpium hirsutum L.) have been conduced, however no investigations of this type have included American Pima cotton (G. barbadense L.). We conducted a study to describe the total dry matter accumulation and partitioning of that dry matter into various plant parts for both Upland and Pima cotton. During the growing seasons of 1990, 1991, and 1992 at two south-central Arizona locations, both Upland (var. DPL 90) and Pima (var. S-6) cotton were grown. Beginning 14 to 20 d after emergence, whole cotton plants were removed and cotton plants were separated into stems, leaves (including petioles), burs (carpel walls), lint, and seeds. The bur fraction, also included squares, flowers, immature bolls, and burs from mature bolls, Regression analyses was used to model nutrient uptake as a function of both days after planting (DAP) and heat units after planting (HUAP). Regression analyses indicated that HUAP was equally good, and in most cases superior to using DAP to model dry matter accumulation and partitioning within both Upland and Pima cotton. The general patterns of dry matter partitioning for Upland and Pima cotton are similar. However, Upland and Pima differ in the relative amount of dry matter incorporated into reproductive (bur, seed, and lint) and vegetative (leaf and stem) structures. Upland cotton produced 3527 lb /acre more total dry matter than Pima cotton. At the end of this study the vegetative /reproductive ratio for Upland was 83% compared to 70% for Pima. Upland was also more efficient at partitioning lint dry matter within the total dry matter of the reproductive structures. Dry matter incorporated into reproductive structures was 23% lint for Upland, compared to only 14% lint in Pima cotton. In summary, Upland placed more total dry matter into reproductive structures, and of the amount placed into reproductive structures, a greater proportion was incorporated into lint, when compared to Pima cotton.
Keywords:
Agriculture -- Arizona; Cotton -- Arizona; Cotton -- Physiology; Cotton -- Growth regulators
Series/Report no.:
370096; Series P-96

Full metadata record

DC FieldValue Language
dc.titleDry Matter Accumulation by Upland and Pima Cottonen_US
dc.contributor.authorUnrah, B. L.en_US
dc.contributor.authorSilvertooth, J. C.en_US
dc.contributor.authorSteger, A. J.en_US
dc.contributor.authorNorton, E. R.en_US
dc.date.issued1994-03-
dc.publisherCollege of Agriculture, University of Arizona (Tucson, AZ)en_US
dc.identifier.journalCotton: A College of Agriculture Reporten_US
dc.description.abstractSeveral investigations of dry matter accumulation by Upland cotton (Gossvpium hirsutum L.) have been conduced, however no investigations of this type have included American Pima cotton (G. barbadense L.). We conducted a study to describe the total dry matter accumulation and partitioning of that dry matter into various plant parts for both Upland and Pima cotton. During the growing seasons of 1990, 1991, and 1992 at two south-central Arizona locations, both Upland (var. DPL 90) and Pima (var. S-6) cotton were grown. Beginning 14 to 20 d after emergence, whole cotton plants were removed and cotton plants were separated into stems, leaves (including petioles), burs (carpel walls), lint, and seeds. The bur fraction, also included squares, flowers, immature bolls, and burs from mature bolls, Regression analyses was used to model nutrient uptake as a function of both days after planting (DAP) and heat units after planting (HUAP). Regression analyses indicated that HUAP was equally good, and in most cases superior to using DAP to model dry matter accumulation and partitioning within both Upland and Pima cotton. The general patterns of dry matter partitioning for Upland and Pima cotton are similar. However, Upland and Pima differ in the relative amount of dry matter incorporated into reproductive (bur, seed, and lint) and vegetative (leaf and stem) structures. Upland cotton produced 3527 lb /acre more total dry matter than Pima cotton. At the end of this study the vegetative /reproductive ratio for Upland was 83% compared to 70% for Pima. Upland was also more efficient at partitioning lint dry matter within the total dry matter of the reproductive structures. Dry matter incorporated into reproductive structures was 23% lint for Upland, compared to only 14% lint in Pima cotton. In summary, Upland placed more total dry matter into reproductive structures, and of the amount placed into reproductive structures, a greater proportion was incorporated into lint, when compared to Pima cotton.en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectCotton -- Arizonaen_US
dc.subjectCotton -- Physiologyen_US
dc.subjectCotton -- Growth regulatorsen_US
dc.identifier.urihttp://hdl.handle.net/10150/209597-
dc.relation.ispartofseries370096en_US
dc.relation.ispartofseriesSeries P-96en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.