Assembly of mRNP Complexes During Stress and Nonsense-Mediated mRNA Decay Quality Control in Saccharomyces cerevisiae

Persistent Link:
http://hdl.handle.net/10150/204068
Title:
Assembly of mRNP Complexes During Stress and Nonsense-Mediated mRNA Decay Quality Control in Saccharomyces cerevisiae
Author:
Swisher, Kylie
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Embargo:
Embargo: Release after 4/19/2012
Abstract:
In eukaryotes, mRNA is in constant flux between an actively translating state and translationally repressed states. Specifically, mRNA degradation and repression factors compete with translation factors to direct mRNAs out of translation for storage or decay. This process often leads to formation of cytoplasmic aggregates. P-bodies are granules that contain mRNA and degradation factors, suggesting they are sites of mRNA decay or storage. Stress granules form in response to stress conditions and contain mRNAs and translation factors.P-bodies and stress granules consist of mRNPs of different compositions, believed to mature and transition between the states. It is proposed that mRNAs transition between the two granules. In the work described below, we use <italic>Saccharomyces cerevisiae</italic> to demonstrate that a decay factor, Dhh1 is capable of existing in both P-body and stress granule mRNPs. This suggests that a decay factor can be part of two different mRNP complexes. Additionally, we identify two novel components of the stress granule mRNPs, Pbp4 and Lsm12, and determine that they are not essential for stress granule formation. Lastly, we show that the stress granule mRNP factor, Pab1, is not absolutely required for stress granule formation.An important aspect of cytoplasmic mRNA regulation is mRNA quality control. One example of this is nonsense-mediated mRNA decay (NMD), whereby aberrant mRNAs containing premature termination codons are targeted for decay, and can be localized to P-bodies. Upf1-3 and the mRNA decapping complex, Dcp2/Dcp1 are essential for NMD, which requires Upf1 interaction with stalled ribosomal/mRNA complexes to target aberrant mRNA for decapping and degradation. How Dcp2/Dcp1 is recruited to aberrant mRNA is poorly understood.Here, we show by yeast two-hybrid assays that an interaction between Dcp2 and Upf1 is mediated by the decapping stimulator Edc3. Interestingly, Edc3 and Upf2 share overlapping binding sites on the Upf1 N-terminal domain. The decapping stimulator, Pat1, also interacts on the Upf1 N-terminus, but Edc3 and Pat1 are not essential for NMD. Surprisingly, the Upf1-Edc3 interaction does not promote or negatively regulate NMD. Thus, the Upf1-Edc3 and Upf1-Pat1 interactions likely regulate a subset of mRNA transcripts, or are essential for proper NMD under different environmental conditions.
Type:
text; Electronic Dissertation
Keywords:
mRNA decay; mRNA regulation; NMD; Saccharomyces cerevisiae; stress granules
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Molecular & Cellular Biology
Degree Grantor:
University of Arizona
Advisor:
Parker, Roy

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAssembly of mRNP Complexes During Stress and Nonsense-Mediated mRNA Decay Quality Control in Saccharomyces cerevisiaeen_US
dc.creatorSwisher, Kylieen_US
dc.contributor.authorSwisher, Kylieen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.releaseEmbargo: Release after 4/19/2012en_US
dc.description.abstractIn eukaryotes, mRNA is in constant flux between an actively translating state and translationally repressed states. Specifically, mRNA degradation and repression factors compete with translation factors to direct mRNAs out of translation for storage or decay. This process often leads to formation of cytoplasmic aggregates. P-bodies are granules that contain mRNA and degradation factors, suggesting they are sites of mRNA decay or storage. Stress granules form in response to stress conditions and contain mRNAs and translation factors.P-bodies and stress granules consist of mRNPs of different compositions, believed to mature and transition between the states. It is proposed that mRNAs transition between the two granules. In the work described below, we use <italic>Saccharomyces cerevisiae</italic> to demonstrate that a decay factor, Dhh1 is capable of existing in both P-body and stress granule mRNPs. This suggests that a decay factor can be part of two different mRNP complexes. Additionally, we identify two novel components of the stress granule mRNPs, Pbp4 and Lsm12, and determine that they are not essential for stress granule formation. Lastly, we show that the stress granule mRNP factor, Pab1, is not absolutely required for stress granule formation.An important aspect of cytoplasmic mRNA regulation is mRNA quality control. One example of this is nonsense-mediated mRNA decay (NMD), whereby aberrant mRNAs containing premature termination codons are targeted for decay, and can be localized to P-bodies. Upf1-3 and the mRNA decapping complex, Dcp2/Dcp1 are essential for NMD, which requires Upf1 interaction with stalled ribosomal/mRNA complexes to target aberrant mRNA for decapping and degradation. How Dcp2/Dcp1 is recruited to aberrant mRNA is poorly understood.Here, we show by yeast two-hybrid assays that an interaction between Dcp2 and Upf1 is mediated by the decapping stimulator Edc3. Interestingly, Edc3 and Upf2 share overlapping binding sites on the Upf1 N-terminal domain. The decapping stimulator, Pat1, also interacts on the Upf1 N-terminus, but Edc3 and Pat1 are not essential for NMD. Surprisingly, the Upf1-Edc3 interaction does not promote or negatively regulate NMD. Thus, the Upf1-Edc3 and Upf1-Pat1 interactions likely regulate a subset of mRNA transcripts, or are essential for proper NMD under different environmental conditions.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectmRNA decayen_US
dc.subjectmRNA regulationen_US
dc.subjectNMDen_US
dc.subjectSaccharomyces cerevisiaeen_US
dc.subjectstress granulesen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMolecular & Cellular Biologyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorParker, Royen_US
dc.contributor.committeememberDieckmann, Carolen_US
dc.contributor.committeememberFares, Hannaen_US
dc.contributor.committeememberTax, Fransen_US
dc.identifier.proquest11575-
dc.identifier.oclc752261439-
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.