Persistent Link:
http://hdl.handle.net/10150/203435
Title:
EMBRYONIC VASCULAR DEVELOPMENT
Author:
Salanga, Matthew Charles
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The formation of the embryonic vasculature is essential for life. The components driving this process are well conserved across vertebrate species. At the core of vascular development is the specification of endothelial precursor cells from nascent mesoderm. Transcription factors of the ETS family are important regulators of endothelial specification. In this document we characterize the role of the ETS transcription factors, ETV2, during embryonic vascular development.Expression analysis shows that Etv2 is highly expressed in hematopoietic and endothelial precursor cells in the Xenopus embryo. In gain-of-function experiments, ETV2 is sufficient to activate ectopic expression of vascular endothelial markers. In addition, ETV2 activated expression of hematopoietic genes representing the myeloid but not the erythroid lineage. Loss-of-function studies indicate that ETV2 is required for expression of all endothelial markers examined. However, knockdown of ETV2 has no detectable effects on expression of either myeloid or erythroid markers. This contrasts with studies in mouse and zebrafish where ETV2 is required for development of the myeloid lineage. Our studies confirm an essential role for ETV2 in endothelial development, but also reveal important differences in hematopoietic development between organisms.Although ETV2 is a pivotal molecule in development it remains unidentified in the chicken genome. We hypothesize that chicken Etv2 is expressed in the early Gallus embryo, and is necessary for endothelial specification consistent with its role in other species. To test this hypothesis we attempted to amplify Etv2 transcripts from Gallus embryos using degenerate PCR. Disappointingly this strategy did not reveal a putative Etv2 candidate. However, some important findings were uncovered, including the cloning of a previously uncharacterized Gallus ETS protein, SPDEF. Additionally the identification of an annotation error mis-identifying Ets gene "Erf" as "Etv3" (also an Ets gene) provided details on gene arrangement previously unknown. The workflow described could be used in future studies for the identification of other members of gene families that exhibit gaps, keeping in mind the goal of the study and the limitations of each technology.
Type:
text; Electronic Dissertation
Keywords:
vasculogenesis; Xenopus; Cell Biology & Anatomy; ETS; Gallus
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Cell Biology & Anatomy
Degree Grantor:
University of Arizona
Advisor:
Krieg, Paul A.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleEMBRYONIC VASCULAR DEVELOPMENTen_US
dc.creatorSalanga, Matthew Charlesen_US
dc.contributor.authorSalanga, Matthew Charlesen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe formation of the embryonic vasculature is essential for life. The components driving this process are well conserved across vertebrate species. At the core of vascular development is the specification of endothelial precursor cells from nascent mesoderm. Transcription factors of the ETS family are important regulators of endothelial specification. In this document we characterize the role of the ETS transcription factors, ETV2, during embryonic vascular development.Expression analysis shows that Etv2 is highly expressed in hematopoietic and endothelial precursor cells in the Xenopus embryo. In gain-of-function experiments, ETV2 is sufficient to activate ectopic expression of vascular endothelial markers. In addition, ETV2 activated expression of hematopoietic genes representing the myeloid but not the erythroid lineage. Loss-of-function studies indicate that ETV2 is required for expression of all endothelial markers examined. However, knockdown of ETV2 has no detectable effects on expression of either myeloid or erythroid markers. This contrasts with studies in mouse and zebrafish where ETV2 is required for development of the myeloid lineage. Our studies confirm an essential role for ETV2 in endothelial development, but also reveal important differences in hematopoietic development between organisms.Although ETV2 is a pivotal molecule in development it remains unidentified in the chicken genome. We hypothesize that chicken Etv2 is expressed in the early Gallus embryo, and is necessary for endothelial specification consistent with its role in other species. To test this hypothesis we attempted to amplify Etv2 transcripts from Gallus embryos using degenerate PCR. Disappointingly this strategy did not reveal a putative Etv2 candidate. However, some important findings were uncovered, including the cloning of a previously uncharacterized Gallus ETS protein, SPDEF. Additionally the identification of an annotation error mis-identifying Ets gene "Erf" as "Etv3" (also an Ets gene) provided details on gene arrangement previously unknown. The workflow described could be used in future studies for the identification of other members of gene families that exhibit gaps, keeping in mind the goal of the study and the limitations of each technology.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectvasculogenesisen_US
dc.subjectXenopusen_US
dc.subjectCell Biology & Anatomyen_US
dc.subjectETSen_US
dc.subjectGallusen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineCell Biology & Anatomyen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKrieg, Paul A.en_US
dc.contributor.committeememberGregorio, Carolen_US
dc.contributor.committeememberDavidson, Braden_US
dc.contributor.committeememberElliott, David A.en_US
dc.contributor.committeememberKrieg, Paul A.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.