Advanced Modulation Formats and All-Optical Processing Solutions for Future Fiber-Optic Communication Systems

Persistent Link:
http://hdl.handle.net/10150/202987
Title:
Advanced Modulation Formats and All-Optical Processing Solutions for Future Fiber-Optic Communication Systems
Author:
Chaouch, Hacène Mahieddine
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation we present the research findings around two important hot topics of modern and future fiber-optic communication systems: 100 Gbit/s transmission and alloptical processing of received phase-modulated signals. The findings are discussed in the same chronological order they were obtained. Each topic is summarized in two chapters that correspond to one selected journal and one conference publications. The first and second chapters are dedicated to the simulation and numerical analysis of 100 Gbit/s systems. In chapter one, we present a thorough investigation of the best 100 Gbit/s serial modulation format. Seven different modulation formats are considered and are compared in terms of tolerance to dispersion and maximum reach for a 10⁻⁹ bit error rate target. In chapter two, the behavior of chapter one’s best candidate is analyzed in a realistic environment. The influence of the existing lower data rate neighboring channels is discussed in particular. The results of these two chapters were obtained in collaboration with engineers from the Deutsche Telekom Technology Center in Darmstadt, Germany. They served as a theoretical basis for a field trial carried out by this same company. Chapter three and four focus on the use of semiconductor optical amplifiers for all-optical processing applications. Impaired phased-modulated signals are under particular interest in this study. The novelty in this work resides in the counter-propagating configuration that the semiconductor optical amplifier is operated in. In chapter three we give a detailed description of the experimental results. The complete setup is explained and the improvement in Q-factor and bit error rate for the received signal is proven. Furthermore, two novel concepts (Photonic Balancing and Saturated Asymmetric Filtering) that explain the observed improvements are developed and discussed for the first time to the best of our knowledge. Finally, chapter four aims at optimizing numerically the experimental setup for the saturated asymmetric filtering technique. The required detuned filter after the saturated semiconductor optical amplifier is optimized in terms of both off set and bandwidth.
Type:
text; Electronic Dissertation
Keywords:
DPSK; Nonlinearities; SOA; Optical Sciences; 100 Gbit/s; All-Optical 2R
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Kueppers, Franko

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleAdvanced Modulation Formats and All-Optical Processing Solutions for Future Fiber-Optic Communication Systemsen_US
dc.creatorChaouch, Hacène Mahieddineen_US
dc.contributor.authorChaouch, Hacène Mahieddineen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation we present the research findings around two important hot topics of modern and future fiber-optic communication systems: 100 Gbit/s transmission and alloptical processing of received phase-modulated signals. The findings are discussed in the same chronological order they were obtained. Each topic is summarized in two chapters that correspond to one selected journal and one conference publications. The first and second chapters are dedicated to the simulation and numerical analysis of 100 Gbit/s systems. In chapter one, we present a thorough investigation of the best 100 Gbit/s serial modulation format. Seven different modulation formats are considered and are compared in terms of tolerance to dispersion and maximum reach for a 10⁻⁹ bit error rate target. In chapter two, the behavior of chapter one’s best candidate is analyzed in a realistic environment. The influence of the existing lower data rate neighboring channels is discussed in particular. The results of these two chapters were obtained in collaboration with engineers from the Deutsche Telekom Technology Center in Darmstadt, Germany. They served as a theoretical basis for a field trial carried out by this same company. Chapter three and four focus on the use of semiconductor optical amplifiers for all-optical processing applications. Impaired phased-modulated signals are under particular interest in this study. The novelty in this work resides in the counter-propagating configuration that the semiconductor optical amplifier is operated in. In chapter three we give a detailed description of the experimental results. The complete setup is explained and the improvement in Q-factor and bit error rate for the received signal is proven. Furthermore, two novel concepts (Photonic Balancing and Saturated Asymmetric Filtering) that explain the observed improvements are developed and discussed for the first time to the best of our knowledge. Finally, chapter four aims at optimizing numerically the experimental setup for the saturated asymmetric filtering technique. The required detuned filter after the saturated semiconductor optical amplifier is optimized in terms of both off set and bandwidth.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectDPSKen_US
dc.subjectNonlinearitiesen_US
dc.subjectSOAen_US
dc.subjectOptical Sciencesen_US
dc.subject100 Gbit/sen_US
dc.subjectAll-Optical 2Ren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorKueppers, Frankoen_US
dc.contributor.committeememberMaes, Carlen_US
dc.contributor.committeememberKupinski, Matthewen_US
dc.contributor.committeememberKueppers, Frankoen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.