USE OF DILUTE HYDROFLUORIC ACID AND DEEP EUTECTIC SOLVENT SYSTEMS FOR BACK END OF LINE CLEANING IN INTEGRATED CIRCUIT FABRICATION

Persistent Link:
http://hdl.handle.net/10150/202981
Title:
USE OF DILUTE HYDROFLUORIC ACID AND DEEP EUTECTIC SOLVENT SYSTEMS FOR BACK END OF LINE CLEANING IN INTEGRATED CIRCUIT FABRICATION
Author:
Padmanabhan Ramalekshmi Thanu, Dinesh
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Fabrication of current generation integrated circuits involves the creation of multilevel copper/low-k dielectric structures during the back end of line processing. This is done by plasma etching of low-k dielectric layers to form vias and trenches, and this process typically leaves behind polymer-like post etch residues (PER) containing copper oxides, copper fluorides and fluoro carbons, on underlying copper and sidewalls of low-k dielectrics. Effective removal of PER is crucial for achieving good adhesion and low contact resistance in the interconnect structure, and this is accomplished using wet cleaning and rinsing steps. Currently, the removal of PER is carried out using semi-aqueous fluoride based formulations. To reduce the environmental burden and meet the semiconductor industry's environmental health and safety requirements, there is a desire to completely eliminate solvents in the cleaning formulations and explore the use of organic solvent-free formulations.The main objective of this work is to investigate the selective removal of PER over copper and low-k (Coral and Black Diamond®) dielectrics using all-aqueous dilute HF (DHF) solutions and choline chloride (CC) - urea (U) based deep eutectic solvent (DES) system. Initial investigations were performed on plasma oxidized copper films. Copper oxide and copper fluoride based PER films representative of etch products were prepared by ashing g-line and deep UV photoresist films coated on copper in CF4/O2 plasma. PER removal process was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy and verified using electrochemical impedance spectroscopy measurements.A PER removal rate of ~60 Å/min was obtained using a 0.2 vol% HF (pH 2.8). Deaeration of DHF solutions improved the selectivity of PER over Cu mainly due to reduced Cu removal rate. A PER/Cu selectivity of ~20:1 was observed in a 0.05 vol% deaerated HF (pH 3). DES systems containing 2:1 U/CC removed PER at a rate of ~10 and ~20 Å/min at 40 and 70oC respectively. A mixture of 10-90 vol% de-ionized water (W) with 2:1 U/CC in the temperature range of 20 to 40oC also effectively removed PER. Importantly, etch rate of copper and low-k dielectric in DES formulations were lower than that in conventional DHF cleaning solutions.
Type:
text; Electronic Dissertation
Keywords:
Dilute Hydrofluoric Acid; Integrated Circuit Fabrication; Post Etch Residue Removal; Materials Science & Engineering; Back End of Line Cleaning; Deep Eutectic Solvents
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Materials Science & Engineering
Degree Grantor:
University of Arizona
Advisor:
Raghavan, Srini

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleUSE OF DILUTE HYDROFLUORIC ACID AND DEEP EUTECTIC SOLVENT SYSTEMS FOR BACK END OF LINE CLEANING IN INTEGRATED CIRCUIT FABRICATIONen_US
dc.creatorPadmanabhan Ramalekshmi Thanu, Dineshen_US
dc.contributor.authorPadmanabhan Ramalekshmi Thanu, Dineshen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractFabrication of current generation integrated circuits involves the creation of multilevel copper/low-k dielectric structures during the back end of line processing. This is done by plasma etching of low-k dielectric layers to form vias and trenches, and this process typically leaves behind polymer-like post etch residues (PER) containing copper oxides, copper fluorides and fluoro carbons, on underlying copper and sidewalls of low-k dielectrics. Effective removal of PER is crucial for achieving good adhesion and low contact resistance in the interconnect structure, and this is accomplished using wet cleaning and rinsing steps. Currently, the removal of PER is carried out using semi-aqueous fluoride based formulations. To reduce the environmental burden and meet the semiconductor industry's environmental health and safety requirements, there is a desire to completely eliminate solvents in the cleaning formulations and explore the use of organic solvent-free formulations.The main objective of this work is to investigate the selective removal of PER over copper and low-k (Coral and Black Diamond®) dielectrics using all-aqueous dilute HF (DHF) solutions and choline chloride (CC) - urea (U) based deep eutectic solvent (DES) system. Initial investigations were performed on plasma oxidized copper films. Copper oxide and copper fluoride based PER films representative of etch products were prepared by ashing g-line and deep UV photoresist films coated on copper in CF4/O2 plasma. PER removal process was characterized using scanning electron microscopy and X-ray photoelectron spectroscopy and verified using electrochemical impedance spectroscopy measurements.A PER removal rate of ~60 Å/min was obtained using a 0.2 vol% HF (pH 2.8). Deaeration of DHF solutions improved the selectivity of PER over Cu mainly due to reduced Cu removal rate. A PER/Cu selectivity of ~20:1 was observed in a 0.05 vol% deaerated HF (pH 3). DES systems containing 2:1 U/CC removed PER at a rate of ~10 and ~20 Å/min at 40 and 70oC respectively. A mixture of 10-90 vol% de-ionized water (W) with 2:1 U/CC in the temperature range of 20 to 40oC also effectively removed PER. Importantly, etch rate of copper and low-k dielectric in DES formulations were lower than that in conventional DHF cleaning solutions.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectDilute Hydrofluoric Aciden_US
dc.subjectIntegrated Circuit Fabricationen_US
dc.subjectPost Etch Residue Removalen_US
dc.subjectMaterials Science & Engineeringen_US
dc.subjectBack End of Line Cleaningen_US
dc.subjectDeep Eutectic Solventsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineMaterials Science & Engineeringen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRaghavan, Srinien_US
dc.contributor.committeememberRaghavan, Srinien_US
dc.contributor.committeememberLucas, Pierreen_US
dc.contributor.committeememberMuralidharan, Krishnaen_US
dc.contributor.committeememberKeswani, Manishen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.