Persistent Link:
http://hdl.handle.net/10150/202975
Title:
Computed Tomographic Imaging Spectrometry
Author:
Vandervlugt, Corrie Jean
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
A Computed Tomographic Imaging Spectrometer (CTIS) is an imaging spectrometer which can acquire a hyper-spectral data set in a single snapshot (one focal plane array integration time) with no moving parts. A specially designed dispersing element, which separates light from the three-dimensional object cube into a grid of two-dimensional prismatic diffraction orders, is the key element in the instrument. The capabilities of the CTIS instrument can be improved by employing a more optimized grating design.There were two main goals to this research: (1) to design a novel CTIS disperser that will improve CTIS capabilities over the previous 5x5 disperser and (2) to integrate the new disperser into the CTIS and evaluate its performance compared to the 5x5 disperser. Six new disperser ideas were evaluated based on their performance in a number of computer simulations to determine the most optimal dispersion pattern. A new CTIS disperser incorporating a novel radial design pattern was developed and tested. Reconstruction results of various spatial and spectral targets are presented. Capabilities of the new CTIS instrument incorporating the radial grating are compared to the previous instrument employing a 5x5 disperser. While both dispersers perform similarly for point-source objects, the radial grating performs better than the previous disperser for extended sources.
Type:
text; Electronic Dissertation
Keywords:
hyper-spectral; imaging spectrometry; Optical Sciences; computer generated holography; CTIS
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Optical Sciences
Degree Grantor:
University of Arizona
Advisor:
Dereniak, Eustace L.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleComputed Tomographic Imaging Spectrometryen_US
dc.creatorVandervlugt, Corrie Jeanen_US
dc.contributor.authorVandervlugt, Corrie Jeanen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractA Computed Tomographic Imaging Spectrometer (CTIS) is an imaging spectrometer which can acquire a hyper-spectral data set in a single snapshot (one focal plane array integration time) with no moving parts. A specially designed dispersing element, which separates light from the three-dimensional object cube into a grid of two-dimensional prismatic diffraction orders, is the key element in the instrument. The capabilities of the CTIS instrument can be improved by employing a more optimized grating design.There were two main goals to this research: (1) to design a novel CTIS disperser that will improve CTIS capabilities over the previous 5x5 disperser and (2) to integrate the new disperser into the CTIS and evaluate its performance compared to the 5x5 disperser. Six new disperser ideas were evaluated based on their performance in a number of computer simulations to determine the most optimal dispersion pattern. A new CTIS disperser incorporating a novel radial design pattern was developed and tested. Reconstruction results of various spatial and spectral targets are presented. Capabilities of the new CTIS instrument incorporating the radial grating are compared to the previous instrument employing a 5x5 disperser. While both dispersers perform similarly for point-source objects, the radial grating performs better than the previous disperser for extended sources.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjecthyper-spectralen_US
dc.subjectimaging spectrometryen_US
dc.subjectOptical Sciencesen_US
dc.subjectcomputer generated holographyen_US
dc.subjectCTISen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDereniak, Eustace L.en_US
dc.contributor.committeememberDallas, William J.en_US
dc.contributor.committeememberDescour, Michael R.en_US
dc.contributor.committeememberDereniak, Eustace L.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.