Optical Tweezers studies of Nucleic Acids and their Interaction with Proteins

Persistent Link:
http://hdl.handle.net/10150/202969
Title:
Optical Tweezers studies of Nucleic Acids and their Interaction with Proteins
Author:
Kalafut, Bennett Samuel
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mechanics and biological function of nucleic acids are intimately coupled. The DNA double helix must be opened to allow base pairing of RNA during transcription; RNA must bend and fold in its many cellular functions. Presented in this dissertation are two investigations of mechanical deformations of nucleic acids, conducted with optical tweezers.In the introduction, the mechanical properties of DNA and RNA and their relevance to their cellular functions are introduced, to give the reader context for the results presented in the Chapters 2 and 3. This is followed by an introduction to the theory of semiflexible polymer elasticity. The optical tweezers instruments used in conducting these investigations are then presented, along with calibration procedures and a short introduction to optical trapping physics.Chapter 2 presents an investigation of the effect of downstream DNA tension on initiation by T7 RNA polymerase. A hidden Markov model is fit to force-dependent lifetimes obtained from optical tweezers experiments, allowing us to identify which steps in initiation are force-dependent and estimate rates and transition state distances. We find that 1-2 pN of tension is sufficient to turn o gene expression by causing transcription bubble collapse and destabilizing the bound state. Our force-dependence scheme and estimated transition distances provide independent supportfor the \scrunching" model of initiation.The effects of cation binding and screening on single-stranded helix formation in poly(A) RNA are presented in Chapter 3. Magnesium and calcium bind to poly(A), stabilize the helix, and change its mechanical properties. A new model of helix-coil transitions is presented and used to estimate energetics and mechanical properties.Chapter 4 presents the first fully objective algorithm for use in analyzing the noisy staircaselike data that is often produced by single-molecule fluorescence experiments. A test based on the SIC (BIC) statistic is used in conjunction with a progressive step-placement scheme to locate changepoints (steps) in noisy data. Its performance is compared to other step detection algorithms in use by biophysicists by repeating tests performed in a recent review.Experimental protocols and computer codes used in these investigations are presentedin detail in the appendices.
Type:
text; Electronic Dissertation
Keywords:
optical tweezers; RNA elasticity; RNA polymerase; single molecule; Physics; changepoint; helix-coil transition
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Physics
Degree Grantor:
University of Arizona
Advisor:
Visscher, Koen

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleOptical Tweezers studies of Nucleic Acids and their Interaction with Proteinsen_US
dc.creatorKalafut, Bennett Samuelen_US
dc.contributor.authorKalafut, Bennett Samuelen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMechanics and biological function of nucleic acids are intimately coupled. The DNA double helix must be opened to allow base pairing of RNA during transcription; RNA must bend and fold in its many cellular functions. Presented in this dissertation are two investigations of mechanical deformations of nucleic acids, conducted with optical tweezers.In the introduction, the mechanical properties of DNA and RNA and their relevance to their cellular functions are introduced, to give the reader context for the results presented in the Chapters 2 and 3. This is followed by an introduction to the theory of semiflexible polymer elasticity. The optical tweezers instruments used in conducting these investigations are then presented, along with calibration procedures and a short introduction to optical trapping physics.Chapter 2 presents an investigation of the effect of downstream DNA tension on initiation by T7 RNA polymerase. A hidden Markov model is fit to force-dependent lifetimes obtained from optical tweezers experiments, allowing us to identify which steps in initiation are force-dependent and estimate rates and transition state distances. We find that 1-2 pN of tension is sufficient to turn o gene expression by causing transcription bubble collapse and destabilizing the bound state. Our force-dependence scheme and estimated transition distances provide independent supportfor the \scrunching" model of initiation.The effects of cation binding and screening on single-stranded helix formation in poly(A) RNA are presented in Chapter 3. Magnesium and calcium bind to poly(A), stabilize the helix, and change its mechanical properties. A new model of helix-coil transitions is presented and used to estimate energetics and mechanical properties.Chapter 4 presents the first fully objective algorithm for use in analyzing the noisy staircaselike data that is often produced by single-molecule fluorescence experiments. A test based on the SIC (BIC) statistic is used in conjunction with a progressive step-placement scheme to locate changepoints (steps) in noisy data. Its performance is compared to other step detection algorithms in use by biophysicists by repeating tests performed in a recent review.Experimental protocols and computer codes used in these investigations are presentedin detail in the appendices.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectoptical tweezersen_US
dc.subjectRNA elasticityen_US
dc.subjectRNA polymeraseen_US
dc.subjectsingle moleculeen_US
dc.subjectPhysicsen_US
dc.subjectchangepointen_US
dc.subjecthelix-coil transitionen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorVisscher, Koenen_US
dc.contributor.committeememberBickel, William S.en_US
dc.contributor.committeememberBrown, Michael F.en_US
dc.contributor.committeememberManne, Srinivasen_US
dc.contributor.committeememberWatkins, Josephen_US
dc.contributor.committeememberVisscher, Koenen_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.