The Use of Capacitive Transimpedance Amplifier Array Detectors for Mass Spectrometry

Persistent Link:
http://hdl.handle.net/10150/202954
Title:
The Use of Capacitive Transimpedance Amplifier Array Detectors for Mass Spectrometry
Author:
Zarzana, Christopher Andrew
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Mass spectrometry is a powerful tool in the field of analytical chemistry. Though there have been numerous advances in mass analyzer technology over the decades, there has been comparatively little advancement in mass spectrometer detector technology. The development of the scientific charged-coupled device over 30 years ago brought the advantages of simultaneous detection over single channel detection to optical spectroscopy, including higher signal-to-noise ratios for a fixed analysis time, shorter analysis time to obtain a given signal-to-noise ratio, and greater sample throughput. While the use of array detectors to achieve simultaneous detection is commonplace in optical spectroscopy, ion detectors for mass spectrometry have lagged behind.Over the last decade, a new type of ion detector, the capacitive transimpedance amplifier (CTIA) array detector, has been developed that has a number of properties that make it an excellent tool for simultaneous detection using dispersive mass spectrometers. The CTIA array detector has high sensitivity as well as high gain stability, allowing it to excel in applications that require high precision measurements of ion signals, such as isotope ratio mass spectrometry.Capacitive transimpedance amplifier array detectors have previously been used to demonstrate the power of simultaneous detection on Mattauch-Herzog double focusing mass spectrometers, but the non-linear mass dispersion of these instruments means that the resolution is not constant across the array. A different type of dispersive instrument, the linear cycloid, has a linear mass dispersion, making it a good candidate for an array detector.The first detailed characterization of gain, read noise and dark-current noise, as well as of operating behavior over a range of temperatures, of the DM0025, a 1696 pixel CTIA array detector was performed.In addition, the first-ever combination of a CTIA array detector with a linear cycloid mass spectrometer was developed. This combined instrument demonstrated simultaneous detection of multiple masses, as well as a linear mass range. The results from the detailed characterization of the detector were used in conjunction with measurements of the performance of the combined instrument to suggest improvements for the next generation of linear cycloid instruments with CTIA array detectors.
Type:
text; Electronic Dissertation
Keywords:
Mass spectrometry; Chemistry; CTIA Detectors; Ion detectors
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Denton, M. B.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleThe Use of Capacitive Transimpedance Amplifier Array Detectors for Mass Spectrometryen_US
dc.creatorZarzana, Christopher Andrewen_US
dc.contributor.authorZarzana, Christopher Andrewen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMass spectrometry is a powerful tool in the field of analytical chemistry. Though there have been numerous advances in mass analyzer technology over the decades, there has been comparatively little advancement in mass spectrometer detector technology. The development of the scientific charged-coupled device over 30 years ago brought the advantages of simultaneous detection over single channel detection to optical spectroscopy, including higher signal-to-noise ratios for a fixed analysis time, shorter analysis time to obtain a given signal-to-noise ratio, and greater sample throughput. While the use of array detectors to achieve simultaneous detection is commonplace in optical spectroscopy, ion detectors for mass spectrometry have lagged behind.Over the last decade, a new type of ion detector, the capacitive transimpedance amplifier (CTIA) array detector, has been developed that has a number of properties that make it an excellent tool for simultaneous detection using dispersive mass spectrometers. The CTIA array detector has high sensitivity as well as high gain stability, allowing it to excel in applications that require high precision measurements of ion signals, such as isotope ratio mass spectrometry.Capacitive transimpedance amplifier array detectors have previously been used to demonstrate the power of simultaneous detection on Mattauch-Herzog double focusing mass spectrometers, but the non-linear mass dispersion of these instruments means that the resolution is not constant across the array. A different type of dispersive instrument, the linear cycloid, has a linear mass dispersion, making it a good candidate for an array detector.The first detailed characterization of gain, read noise and dark-current noise, as well as of operating behavior over a range of temperatures, of the DM0025, a 1696 pixel CTIA array detector was performed.In addition, the first-ever combination of a CTIA array detector with a linear cycloid mass spectrometer was developed. This combined instrument demonstrated simultaneous detection of multiple masses, as well as a linear mass range. The results from the detailed characterization of the detector were used in conjunction with measurements of the performance of the combined instrument to suggest improvements for the next generation of linear cycloid instruments with CTIA array detectors.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMass spectrometryen_US
dc.subjectChemistryen_US
dc.subjectCTIA Detectorsen_US
dc.subjectIon detectorsen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorDenton, M. B.en_US
dc.contributor.committeememberWysocki, Vicki H.en_US
dc.contributor.committeememberAspinwall, Craig A.en_US
dc.contributor.committeememberKukolich, Stephen G.en_US
dc.contributor.committeememberDenton, M. Bonneren_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.