Diffusion Coefficients and Mechanical Properties of Polymerizable Lipid Membranes

Persistent Link:
http://hdl.handle.net/10150/202760
Title:
Diffusion Coefficients and Mechanical Properties of Polymerizable Lipid Membranes
Author:
Orosz, Kristina Suzanne
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
It would be beneficial to incorporate transmembrane proteins (TMPs) into biosensors, because TMPs are important for cell function in healthy and diseased states. These devices would employ an artificial cell membrane to maintain TMP function since cell membranes, which are mostly lipids, are necessary for the TMPs to function. These artificial lipid membranes must be robust for sensor applications. The ruggedness of these artificial membranes can be increased by using polymerizable lipids. Some polymerized lipid membranes exhibit increased stability, while successfully incorporating TMPs.Some polymerized membranes do not support the activity of certain TMPs, while maintaining the function of others. It is believed the physical properties of the membranes are important for TMP function. Some important physical properties of polymerizable lipid membranes have not yet been measured. Here, fluidity and mechanical properties of polymerizable dienoylPC lipid membranes were investigated.Fluorescence Recovery After Photobleaching was used to measure the fluidity of polymerizable dienoylPC membranes. Unpolymerized, UV-polymerized, and redox-polymerized membranes were investigated. Three types of membranes were found: fluid, partially fluid, and immobile. Unpolymerized and some polymerized membranes were fluid, while only polymerized membranes were partially fluid or immobile. Polymer size is believed to cause the differences in fluidity. This study highlights how polymerization parameters can influence membrane fluidity.Micropipette Aspiration was used to measure the mechanical properties of Giant Unilamellar Vesicles (GUVs) composed of dienolyPC lipids. Unpolymerized and UV-polymerized GUVs were investigated. Strength measurements showed that denoylPC GUVs were stronger than sorbylPC GUVs. Area expansion moduli of denoylPCs and mono-SorbPC GUVs were slightly lower than SOPC GUVs, while bis-SorbPC GUVs were substantially easier to stretch. The bending moduli of all GUVs was similar. UV-polymerization had no significant effect on the parameters. The difference in strength between denoylPCs and sorbylPCs is hypothesized to be due to the porous nature of sorbylPCs. It is thought UV-polymerization of these GUVs created polymers too small to significantly alter mechanical properties.It was demonstrated that some stable membranes are also fluid, which is important for the function of certain TMPs. A correlation cannot be made between the bending and stretching moduli of polymerizable membranes and function of TMPs.
Type:
text; Electronic Dissertation
Keywords:
Lipid membranes; Mechanical Properties; micropipette Aspiration; Polymerizable Lipids; Chemistry; Diffusion Coefficient; FRAP
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Chemistry
Degree Grantor:
University of Arizona
Advisor:
Saavedra, Steven S.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleDiffusion Coefficients and Mechanical Properties of Polymerizable Lipid Membranesen_US
dc.creatorOrosz, Kristina Suzanneen_US
dc.contributor.authorOrosz, Kristina Suzanneen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIt would be beneficial to incorporate transmembrane proteins (TMPs) into biosensors, because TMPs are important for cell function in healthy and diseased states. These devices would employ an artificial cell membrane to maintain TMP function since cell membranes, which are mostly lipids, are necessary for the TMPs to function. These artificial lipid membranes must be robust for sensor applications. The ruggedness of these artificial membranes can be increased by using polymerizable lipids. Some polymerized lipid membranes exhibit increased stability, while successfully incorporating TMPs.Some polymerized membranes do not support the activity of certain TMPs, while maintaining the function of others. It is believed the physical properties of the membranes are important for TMP function. Some important physical properties of polymerizable lipid membranes have not yet been measured. Here, fluidity and mechanical properties of polymerizable dienoylPC lipid membranes were investigated.Fluorescence Recovery After Photobleaching was used to measure the fluidity of polymerizable dienoylPC membranes. Unpolymerized, UV-polymerized, and redox-polymerized membranes were investigated. Three types of membranes were found: fluid, partially fluid, and immobile. Unpolymerized and some polymerized membranes were fluid, while only polymerized membranes were partially fluid or immobile. Polymer size is believed to cause the differences in fluidity. This study highlights how polymerization parameters can influence membrane fluidity.Micropipette Aspiration was used to measure the mechanical properties of Giant Unilamellar Vesicles (GUVs) composed of dienolyPC lipids. Unpolymerized and UV-polymerized GUVs were investigated. Strength measurements showed that denoylPC GUVs were stronger than sorbylPC GUVs. Area expansion moduli of denoylPCs and mono-SorbPC GUVs were slightly lower than SOPC GUVs, while bis-SorbPC GUVs were substantially easier to stretch. The bending moduli of all GUVs was similar. UV-polymerization had no significant effect on the parameters. The difference in strength between denoylPCs and sorbylPCs is hypothesized to be due to the porous nature of sorbylPCs. It is thought UV-polymerization of these GUVs created polymers too small to significantly alter mechanical properties.It was demonstrated that some stable membranes are also fluid, which is important for the function of certain TMPs. A correlation cannot be made between the bending and stretching moduli of polymerizable membranes and function of TMPs.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectLipid membranesen_US
dc.subjectMechanical Propertiesen_US
dc.subjectmicropipette Aspirationen_US
dc.subjectPolymerizable Lipidsen_US
dc.subjectChemistryen_US
dc.subjectDiffusion Coefficienten_US
dc.subjectFRAPen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSaavedra, Steven S.en_US
dc.contributor.committeememberArmstrong, Neal R.en_US
dc.contributor.committeememberPemberton, Jeanneen_US
dc.contributor.committeememberMcEvoy, Meganen_US
dc.contributor.committeememberSaavedra, S. Scotten_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.