Copper Resistant Bacteria Better Tolerate Commercially Available Antimicrobial Treatments Based in Silver and Silver-Copper Ions

Persistent Link:
http://hdl.handle.net/10150/202734
Title:
Copper Resistant Bacteria Better Tolerate Commercially Available Antimicrobial Treatments Based in Silver and Silver-Copper Ions
Author:
Torres Urquidy, Oscar Hernando
Issue Date:
2011
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In the current study, the antibacterial efficacy of zeolites containing silver or copper ions or a combination of these metals was assessed against several diverse copper resistant (CuR) and copper sensitive (CuS) strains of clinically relevant bacterial species. CuR Pseudomonas putida was significantly reduced in comparison to the unamended zeolite control. Unexpectedly, a CuS P. putida strain with no reported metal resistance appeared to be more resistant to the zeolite containing either Ag or Ag/Cu than the CuR strain. Contrary to expectations, after three and six hours of exposure, the CuS Escherichia coli displayed significantly more resistance to the Ag/Cu and Cu treatments than the reportedly CuR E. coli. All three reportedly CuR strains of Salmonella enterica exhibited resistance to Cu and Ag, as well as to the combination of the two metals after three and six hours of exposure. The reductions observed after 24 hours for all three CuR strains with Cu alone were still statistically significant compared to that of the CuS S. enterica strain. In addition, two of the CuR strains were more resistant to silver after 24 hours of exposure, suggesting a shared resistance mechanism such a copper efflux pump that also removes silver ions from the cell. Both the CuR and CuS strains of E. faecium were highly resistant to all of the treatments. In general, after comparison of all the resistances with all the treatments, E. faecium was the most resistant species, P. putida was the least resistant species, and the Salmonella strains were more resistant than E. coli in most cases.
Type:
text; Electronic Dissertation
Keywords:
copper; copper resistant; silver; zeolite; Soil, Water & Environmental Science; antibacterial; bacteria
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Graduate College; Soil, Water & Environmental Science
Degree Grantor:
University of Arizona
Advisor:
Gerba, Charles P.

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleCopper Resistant Bacteria Better Tolerate Commercially Available Antimicrobial Treatments Based in Silver and Silver-Copper Ionsen_US
dc.creatorTorres Urquidy, Oscar Hernandoen_US
dc.contributor.authorTorres Urquidy, Oscar Hernandoen_US
dc.date.issued2011-
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn the current study, the antibacterial efficacy of zeolites containing silver or copper ions or a combination of these metals was assessed against several diverse copper resistant (CuR) and copper sensitive (CuS) strains of clinically relevant bacterial species. CuR Pseudomonas putida was significantly reduced in comparison to the unamended zeolite control. Unexpectedly, a CuS P. putida strain with no reported metal resistance appeared to be more resistant to the zeolite containing either Ag or Ag/Cu than the CuR strain. Contrary to expectations, after three and six hours of exposure, the CuS Escherichia coli displayed significantly more resistance to the Ag/Cu and Cu treatments than the reportedly CuR E. coli. All three reportedly CuR strains of Salmonella enterica exhibited resistance to Cu and Ag, as well as to the combination of the two metals after three and six hours of exposure. The reductions observed after 24 hours for all three CuR strains with Cu alone were still statistically significant compared to that of the CuS S. enterica strain. In addition, two of the CuR strains were more resistant to silver after 24 hours of exposure, suggesting a shared resistance mechanism such a copper efflux pump that also removes silver ions from the cell. Both the CuR and CuS strains of E. faecium were highly resistant to all of the treatments. In general, after comparison of all the resistances with all the treatments, E. faecium was the most resistant species, P. putida was the least resistant species, and the Salmonella strains were more resistant than E. coli in most cases.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectcopperen_US
dc.subjectcopper resistanten_US
dc.subjectsilveren_US
dc.subjectzeoliteen_US
dc.subjectSoil, Water & Environmental Scienceen_US
dc.subjectantibacterialen_US
dc.subjectbacteriaen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGerba, Charles P.en_US
dc.contributor.committeememberChen, Qinen_US
dc.contributor.committeememberReynolds, Kelly A.en_US
dc.contributor.committeememberBright, Kelly R.en_US
dc.contributor.committeememberGerba, Charles P.en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.