Persistent Link:
http://hdl.handle.net/10150/201443
Title:
Late Season Water and Nitrogen Effects on Durum Quality, 1995 (Preliminary)
Author:
Ottman, M. J.; Doerge, T. A.; Martin, E. C.
Issue Date:
Oct-1995
Publisher:
College of Agriculture, University of Arizona (Tucson, AZ)
Journal:
Forage and Grain: A College of Agriculture Report
Abstract:
Durum grain quality is affected by many factors, but water and nitrogen are factors that the grower can control. The purpose of this research was to determine 1) the nitrogen application rate required at pollen shed to maintain adequate grain protein levels if irrigation is excessive or deficient during grain fill and 2) if nitrogen applications during grain fill can elevate grain protein. Field research was conducted at the Maricopa Agricultural Center using the durum varieties Duraking, Minos, and Turbo. The field was treated uniformly until pollen shed when nitrogen was applied at rates of 0, 30, and 60 lbs /acre. During grain fill, the plots were irrigated based on 30, 50, or 70% moisture depletion. In a separate experiment, nitrogen fertilizer was applied at a rate of 30 lbs N /acre at pollen shed only, pollen shed and the first irrigation after pollen shed, and pollen shed and the first and second irrigation after pollen shed. Irrigation had no effect on grain protein level, although increasing nitrogen rates at pollen shed from 0 to 30 and 30 to 60 lbs N /acre increased protein by 1 percentage point. Nitrogen fertilizer application at the first irrigation after pollen shed increased grain protein content from 10.4 to 11.4% and application at the first and second irrigation after pollen shed increased grain protein content further to 11.9% averaged over varieties. Irrigation management during grain fill may not play as large a role in controlling grain protein content as was originally thought except perhaps on heavy soils, and nitrogen fertilizer application during grain fill may not be too late to increase grain protein content.
Keywords:
Agriculture -- Arizona; Grain -- Arizona; Forage plants -- Arizona; Barley -- Arizona; Wheat -- Arizona
Series/Report no.:
370102; Series P-102

Full metadata record

DC FieldValue Language
dc.titleLate Season Water and Nitrogen Effects on Durum Quality, 1995 (Preliminary)en_US
dc.contributor.authorOttman, M. J.en_US
dc.contributor.authorDoerge, T. A.en_US
dc.contributor.authorMartin, E. C.en_US
dc.date.issued1995-10-
dc.publisherCollege of Agriculture, University of Arizona (Tucson, AZ)en_US
dc.identifier.journalForage and Grain: A College of Agriculture Reporten_US
dc.description.abstractDurum grain quality is affected by many factors, but water and nitrogen are factors that the grower can control. The purpose of this research was to determine 1) the nitrogen application rate required at pollen shed to maintain adequate grain protein levels if irrigation is excessive or deficient during grain fill and 2) if nitrogen applications during grain fill can elevate grain protein. Field research was conducted at the Maricopa Agricultural Center using the durum varieties Duraking, Minos, and Turbo. The field was treated uniformly until pollen shed when nitrogen was applied at rates of 0, 30, and 60 lbs /acre. During grain fill, the plots were irrigated based on 30, 50, or 70% moisture depletion. In a separate experiment, nitrogen fertilizer was applied at a rate of 30 lbs N /acre at pollen shed only, pollen shed and the first irrigation after pollen shed, and pollen shed and the first and second irrigation after pollen shed. Irrigation had no effect on grain protein level, although increasing nitrogen rates at pollen shed from 0 to 30 and 30 to 60 lbs N /acre increased protein by 1 percentage point. Nitrogen fertilizer application at the first irrigation after pollen shed increased grain protein content from 10.4 to 11.4% and application at the first and second irrigation after pollen shed increased grain protein content further to 11.9% averaged over varieties. Irrigation management during grain fill may not play as large a role in controlling grain protein content as was originally thought except perhaps on heavy soils, and nitrogen fertilizer application during grain fill may not be too late to increase grain protein content.en_US
dc.subjectAgriculture -- Arizonaen_US
dc.subjectGrain -- Arizonaen_US
dc.subjectForage plants -- Arizonaen_US
dc.subjectBarley -- Arizonaen_US
dc.subjectWheat -- Arizonaen_US
dc.identifier.urihttp://hdl.handle.net/10150/201443-
dc.relation.ispartofseries370102en_US
dc.relation.ispartofseriesSeries P-102en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.