ABOUT THE COLLECTION

The Citrus Report, first published in 1978, is one of several commodity-based agricultural research reports published by the University of Arizona. The purpose of the report is to provide an annual research update to farmers, researchers, and those in the agricultural industry. The research is conducted by University of Arizona and USDA-ARS scientists.

Both historical and current Citrus Reports have been made available via the UA Campus Repository, as part of a collaboration between the College of Agriculture and Life Sciences and the University Libraries.

Other commodity-based agricultural research reports available in the UA Campus Repository include:
Cotton Reports | Forage & Grain Reports | Sugarbeet Reports | Turfgrass Reports | Vegetable Reports

QUESTIONS?

Contact CALS Publications at pubs@cals.arizona.edu, or visit the CALS Publications website.


Contents for Citrus Research Report 2003

Insect Pest Management Disease Management Fertilization Practices Orchard Floor Management Cultivar and Rootstock Evaluation

Recent Submissions

  • Lemon Rootstock Trials in Arizona – 2002-03

    Wright, Glenn C.; Peña, Marco A.; Wright, Glenn; Department of Plant Sciences, U. of A.; Yuma Mesa Agriculture Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    In a rootstock evaluation trial planted in 1993, five rootstocks, ‘Carrizo’ citrange, Citrus macrophylla, ‘Rough Lemon’, Swingle citrumelo and Citrus volkameriana were selected for evaluation using 'Limoneira 8A Lisbon' as the scion. 1994-2002 yield and packout results indicate that trees on C. macrophylla, C. volkameriana and ‘Rough Lemon’ are superior to those on other rootstocks in both growth and yield. C. macrophylla is outperforming C. volkameriana. For the second year in a row, ‘Rough Lemon’ trees performed similarly to C. macrophylla and better than C. volkameriana. ‘Swingle’ and Carrizo’ are performing poorly. In two other rootstock evaluation trials, both planted in 1995, C. macrophylla and/or C. volkameriana are outperforming other trifoliate and trifoliate-hybrid rootstocks under test.
  • Established ‘Lisbon’ Lemon Trials in Arizona – 2002-03

    Wright, Glenn C.; Peña, Marco A.; Wright, Glenn; Department of Plant Sciences, U. of A.; Yuma Mesa Agriculture Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Four 'Lisbon' lemon selections, 'Frost Nucellar', 'Corona Foothills', 'Limoneira 8A' and 'Prior' were selected for evaluation on Citrus volkameriana rootstock. 1994-2002 results indicate that the 'Limoneira 8A Lisbon' and ‘Corona Foothills Lisbon’ are superior in yield and fruit size. Results for 2002-03 indicate that these cultivars as well as ‘Frost Nucellar’ have superior yield.
  • Citrus Orchard Floor Management 2001-2003: Comparison of a Disk, “Perfecta” Cultivator, and Weed Sensing Sprayer

    Rector, Ryan J.; McCloskey, William B.; Wright, Glenn C.; Sumner, Chris; Wright, Glenn; Department of Plant Sciences, University of Arizona, Tucson, Arizona; Department of Plant Sciences, Yuma Mesa Agricultural Center, University of Arizona, Yuma, Arizona; Yuma County Pest Abatement District, Yuma, Arizona (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    An optical weed sensing sprayer (WeedSeeker) was evaluated for making postemergence glyphosate herbicide applications in a Yuma, AZ lemon orchard. In addition, mechanical (disk and Perfecta cultivator) and chemical weed control strategies were compared. Results were fairly similar; however, the use of the WeedSeeker units combined with a preemergence herbicide (H1) increased weed control three fold compared to disking (D) and perfecta (P1). Additionally, when the WeedSeeker units were used in conjunction with preemergence herbicides, spray volume was reduced by 66% compared to a conventional sprayer and by 57% when used for postemergence applications only. There was a relationship between weed ground cover and the area sprayed by the WeedSeeker units indicating that maximum postemergence herbicide savings will occur at low weed densities or less than 10% groundcover. The use of a sprayer with an improved suspension system allowed for faster spraying speeds than were possible with the tractor mounted sprayer. Weed control was similar for the conventional and the WeedSeeker sprayer. However, yields were variable for both years. Future investigations will include efforts to develop crop budgets based on experimental operations
  • Response of Micro-Sprinkler Irrigated ‘Lisbon’ lemons to N Rate and Source on a Superstition Sand

    Sanchez, C. A.; Peralta, M.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Much of the citrus produced in southwestern Arizona is grown on sandy soils. Because these soils have a low ion exchange capacity, are highly permeable to water, and are prone to nitrate leaching, achieving efficient N management presents a continuing challenge. Studies were conducted during 1999, 2000, and 2001 to evaluate the response of micro-sprinkler irrigated lemons to N rate (0, 1.8, and 3.6 kg N tree-1 yr-1) and N source (UN32, CAN-17, CN9, and mixed program) on Superstition Sand. Lemon yield increased by N rate during the first and second harvests in 1999, 2000, and 2001. In 1999, yields increased linearly to 3.6 kg N tree-1 yr-1 but in 2000 and 2001 yields were maximized at 1.8 kg N tree-1 yr-1. In 1999 where larger increments of N were applied over a smaller time period relative to the other seasons, UN32 seemed to decrease yields at the highest N rate. There were no significant effects to N source in 2000 and 2001.
  • Foliar applications of Lo-Biuret Urea and Potassium Phosphite to Navel Orange trees

    Wright, Glenn C.; Peña, Marco; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    This experiment was established in January 2000 in a block of ‘Washington’ navel orange trees at Verde Growers, Stanfield, AZ. Treatments included: normal grower practice, winter low biuret (LB) urea application, summer LB urea application, winter LB urea application plus winter and spring potassium phosphite, winter LB urea application plus summer potassium phosphite, and normal grower practice plus spring potassium phosphite. Each treatment was applied to approximately four acres of trees. For 2000-01, yields ranged from 40 to 45 lbs. per tree, and there was no effect of treatments upon total yield, and only slight effect upon fruit size, grade and quality. For 2001-02, there was a slight effect of treatment upon yield as LB urea led to improved yield, while potassium phosphite led to reduced yield. Normal grower practice was intermediate between these two extremes. For 2002-03, we noted a large increase in yield, however the yield data was lost when the block was inadvertently harvested.
  • Effect of Organic Amendments on Lemon Leaf Tissue, Soil Analysis and Yield

    Zerkoune, Mohammed; Wright, Glenn; Kerns, David; Wright, Glenn; University of Arizona Cooperative Extension (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    An experiment was initiated in 2000 to study the feasibility of growing organic lemons in the southwest desert of Arizona. An eight-acre field was selected on Superstition sandy soil at the Mesa Agricultural Research Center to conduct this investigation. Lemon trees were planted at 25 x 25 feet spacing in 1998. The initial soil test in top 6 inches was 5 ppm nitrate-nitrogen and 4.9 ppm NaHCO3-P. Soil pH was 8.7 in the top 6 inches. Four treatments were applied in randomized complete block design repeated four times. The treatments were beef cattle feedlot manure and perfecta, clover and guano from 2000 to 2002, cowpea and guano in 2003, and guano and perfecta, and standard practice treatment. Soil samples were collected from 0-6 and 6-12 inches the first week of March 2003 and analyzed for available nutrients. Results showed a difference for most nutrients in 0 to 6 and 6 to 12 inches between treatments. Nitrate- nitrogen increased significantly from 3.25 ppm in standard treatment to 19.10 ppm in the manure treatment. Similarly, soil organic matter increased from 0.1% in standard treatment to 0.2% in the manure perfecta treatment. Phosphorus level increased significantly from 7 ppm in guano perfecta to 56.5 ppm in manure perfecta treatment. Leaf tissue analysis indicated that nitrate level was influenced by treatment. Both commercial standard and organic treatments were equally effective in controlling citrus thrips, but repeated applications were required. Mite population has been detected at low level with no significant differences observed among treatments.
  • Development of Best Management Practices for Fertigation of Young Citrus Trees, 2003 Report

    Thompson, Thomas L.; White, Scott A.; Walworth, James; Sower, Greg; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    ‘Newhall’ navel oranges on ‘Carrizo’ rootstock were planted in Mar. 1997 at the Citrus Agricultural Center. The objectives of this experiment, conducted during 2000 - 2003, were to i) determine the effects of N rate and fertigation frequency for microsprinkler-irrigated navel oranges on tree N status, and crop yield and quality; and ii) develop Best Management Practices which promote optimum tree growth and production while minimizing nitrate leaching. The trees were equipped with a microsprinkler irrigation system. The experiment was a randomized complete block factorial with N rates of 0, 0.15, 0.30, and 0.45 lb N/tree/year, and fertigation frequencies of weekly, monthly, and three times per year. Each of the ten treatments was replicated five times. The trees were harvested in December or January of each growing season. Fruit were processed through an automatic fruit sizer, and fruit from each plot were further evaluated for fruit quality. Leaf N concentration and fruit yield of 4-6 year old trees were responsive to N rate, but not to fertigation frequency. Fruit quality and packout were not significantly affected by either N rate or fertigation frequency. Fruit yield was optimized at annual N rates of 0.25 lb/tree (four-year-old trees) to 0.35 lb/tree (six-year-old trees) during this experiment. We propose new tissue guidelines for guiding N fertilization of young microsprinkler-irrigated navel oranges.
  • Continued Evaluation of N Fertilization Practices for Surface Irrigated Lemons

    Sanchez, Charles A.; Wright, Glenn C.; Peralta, Manuel; Wright, Glenn; Yuma Agricultural Center (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Much of the citrus produced in southwestern Arizona is grown on sandy soils. Because these soils have a low ion exchange capacity, are highly permeable to water, and are prone to nitrate leaching, achieving efficient N management presents a continuing challenge. A field study was conducted on a superstition sand to evaluate the response of lemons to combinations of soil and foliar applied N. Lemon yields significantly increased by soil applied N. Foliar N increased yields of lemons the first harvest at the lower soil N rates. However, there were no other significant responses to foliar N. Overall, there were few meaningful changes in fruit quality to N fertilization. The N content of the leaves increased linearly to soil N application
  • Characterization of Alternaria isolates associated with Alternaria Rot of Citrus

    Pryor, Barry; Matheron, Mike; Figuli, Patricia; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Alternaria rot of citrus is a serious problem in citrus production world wide. In Arizona, the disease is most commonly found in Minneola tangelos and navel oranges grown in Maricopa County. Alternaria rot occurs primarily as a stem-end rot on fruit held in cold storage. However, under optimum conditions the disease occurs as a stylar-end rot in the orchards. In Arizona, the disease can significantly reduce yield, and annual fruit losses have been estimated at 0.5 box per tree. In terms of fruit quality, this disease can be a serious problem for the fresh fruit market as well as for the processing industry because only a small amount of rot imparts a bitter flavor and small black fragments of rotted tissue spoil the appearance of the juice. The application of fungicides is the most common tactic used to reduce losses to this disease. However, to date, no consistent reduction in disease has been achieved through chemical applications. This suggests that additional information relating to the biology of the pathogen and the epidemiology of disease will be necessary for the successful development of a reliable disease management program.
  • Evaluation of Fungicidal Management of Alternaria Fruit Rot on Citrus in 2000 and 2001 Seasons

    Matheron, Michael E.; Porchas, Martin; Wright, Glenn; University of Arizona, Yuma Agricultural Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Alternaria fruit rot on Minneola tangelos and navel oranges can reach economically important levels in central Arizona. The objective of this study was to test the efficacy of a new fungicide, Headline (BAS 500), for disease management. A trial was conducted in 2000 and 2001 in a commercial Minneola tangelo grove with a history of Alternaria fruit rot. In 2000, nine trees were sprayed monthly from August to December with Headline at a rate of 0.25 lb active ingredient per acre. Another nine trees were not sprayed and served as controls. In 2001, 15 trees were sprayed monthly from November, 2001 to February, 2002 with the same rate of fungicide used in 2000. Another 15 trees were not sprayed and served as controls. Disease severity was evaluated monthly from September to February in each season by counting the number of infected fruit that had dropped from trees. No disease was evident from September through November, when fruit were green. By December the fruit had matured and turned color; additionally, Alternaria fruit rot was first observed. Low numbers of infected fruit were recorded in December and January with higher numbers of infected fruit from non-treated compared to treated trees. In February the mean number of infected fruit from trees treated with Headline and non-treated trees was 2.1 and 3.8%, respectively, in the 2000 trial and 1.9 and 4.5%, respectively, in the 2001 trial. Disease was numerically reduced in both years; however, the difference was only statistically significant in 2001. The findings of this research suggest that Headline could provide meaningful reduction in the incidence and severity of Alternaria fruit rot in Minneola tangelo groves.
  • Control of Early Woolly Whiteflies Infestations with Foliar Insecticides

    Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Five foliar insecticide treatments (Esteem, Provado, Applaud, Assail, and Danitol + Lorsban) were evaluated for their control of early woolly whitefly infestations in lemons. Esteem and Applaud are insect growth regulators that should have little impact on whitefly parasitoids. The impact of Provado and Assail on whitefly parasitoids is not certain, but at high rates may be detrimental, while Danitol + Lorsban will be especially harmful to parasitoids. The impact of these insecticides on woolly whitefly could not be fully determined in this trial due to the effectiveness of parasitoids, Eretmocerus comperei or E. dozieri (exact species not certain), on controlling the whiteflies in this test. However, other research (not reported here) has indicated that all of the insecticide treatments evaluated have good activity against woolly whitefly. Because parasitoids can be extremely effective in mitigating woolly whiteflies populations during the early phases of colonization, it is recommended that chemical control not be utilized until woolly whitefly colonies are common. However, previous experiences suggest that allowing woolly whitefly populations develop extremely high populations should be avoided.
  • Results of New Cultivar Selection Trials for Lemon in Arizona - 2002

    Wright, Glenn C.; Peña, Marco A.; Wright, Glenn; Department of Plant Sciences, U. of A.; Yuma Mesa Agriculture Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Three lemon cultivar selection trials are being conducted at the Yuma Mesa Agriculture Center in Somerton, AZ. Data from these trials suggest that ‘Limonero Fino 49’ selections may be a suitable alternative for the varieties most commonly planted in Southwest Arizona today. ‘Cavers Lisbon’ and ‘Villafranca’ might also be planted on an experimental basis
  • Results of New Cultivar Selection Trials for Orange in Arizona - 2003

    Wright, Glenn C.; Peña, Marco A.; Wright, Glenn; Department of Plant Sciences, U. of A.; Yuma Mesa Agriculture Center, Yuma, AZ (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Three orange cultivar trials have been established in Arizona, one at the Yuma Mesa Agricultural Center, Yuma, AZ and one at the Citrus Agriculture Center, Waddell, AZ. For the navel orange trial in Yuma, ‘Fisher’ navel continues to have the greatest yield, but is unacceptably granulated For the Waddell trial, the second year data has been collected, and suggests that ‘Fisher’ and ‘Beck- Earli’ are outperforming the other cultivars tested to date.
  • Mite Control and Damage to Arizona Citrus

    Kerns, David L.; Wright, Glenn (College of Agriculture, University of Arizona (Tucson, AZ), 2003)
    Lemons were left untreated or treated for mites with Danitol (fenpropathrin). Mite populations were estimated and yield and fruit damage was accessed. Yuma spider mite, Eotetranychus yumensis, was the predominate mite species present during the high fruit susceptibility period. Although there was no apparent impact of mites on yield in this study, there was significant fruit damage that could be attributed to Yuma spider mite. The damage appeared as bronzed colored pitting of the fruit peel. Based on damage ratings, the treated plots produced 56% fancy, 34% choice, and 10% fruit grade based on mite damage, whereas the untreated plots produced 47%, 31% and 22% fancy, choice and juice grade fruit respectively. Statistically, the treated plots produce more fancy and less juice fruit, but did not differ in choice fruit. Although the treated areas produced better quality fruit, the amount of damage suffered in those plots was higher than desired. Fruit in the treated plots likely suffered some mite damage before treatments were initiated. In addition to the fruit damage test, a miticide efficacy test targeting Yuma spider mite on lemon was conducted comparing Agri-Mek, Danitol, Kelthane, Microthiol, and Nexter to an untreated check. Agri-Mek, Nexter, and Microthiol offered 14 days of control; although at 6 DAT Agri-Mek and Nexter did not differ from the untreated. Danitol and Kelthane contained fewer mite that the untreated for at least 35 DAT.
  • Population Dynamics of the Citrus Leafminer in Arizona

    Kerns, David L.; Wright, Glenn (2003)
    Citrus leafminer (CLM) was monitored in a five year old block of lemons on the Yuma Mesa for one year. Unlike 2001, no CLM were found in the spring or early fall. From mid-November through mid-December CLM populations were very light ranging from 1 to 4% infested flush. In early January 2003, the CLM population began to increase peaking on 23 January at 68% infested flush. Although 68% appears to be a large infestation, the CLM population was not numerically high since there was not a great deal of fresh flush growth in the grove at that time. Thus, the CLM were concentrated on what little flush was present. Additionally, CLM larvae were tagged and monitored in January and February 2003. Of the 25 CLM larvae tagged, within five weeks only 9 had survived. Most of those killed appeared to have been killed by predators; most likely Yuma spider mite, Eotetranychus yumensis, and to a lesser extent Tydeus spp. Six of the larvae were killed by parasitoids, comprising two species; Cirrophilus coachellae and an unknown species that was damaged and could not be identified.
  • Particle Film Technologies: Pest Management and Yield Enhancement Qualities in Lemons

    Kerns, David L.; Wright, Glenn C.; Wright, Glenn (2003)
    Surround WP and Snow were evaluated for their ability to manage citrus thrips populations in lemons on the Yuma Mesa, and their impact on lemon yield, fruit quality, and packout. Both Surround and Snow effectively controlled citrus thrips and prevented fruit scarring. Surround produced higher yields than either Snow or the commercial standard at the first harvest (#9 ring). There were no differences in yield among treatments for the second (strip) harvest, nor were their any differences in total yield. These data suggest that Surround may increase fruit earliness or sizing. There were no statistical differences among any of the treatments in fruit size frequency or quality for any of the harvests, and there was no apparent benefit from applying an additional application of Surround or Snow post thrips season solely for quality, fruit size, or yield enhancement. The activity of Surround does not appear to be adversely affected by the inclusion of the insecticides Danitol, Baythroid, Carzol, or Success, nor do these insecticides appear to be adversely affected by Surround. Foliar fertilizers did not appear to adversely affect the activity of Surround when tank mixed. However, there is some evidence that Surround may negatively affect the absorption of Fe and Mn when tank mixed with Zn, Fe, Mn lignosulfonate, but this data is not conclusive. The addition of a non-ionic surfactant appears to enhance the on-leaf distribution of Surround over light petroleum and paraffin based oils, but long term efficacy is not affected.