Development of a New Microporous Filter Method for the Concentration of Viruses from Water

Persistent Link:
http://hdl.handle.net/10150/196134
Title:
Development of a New Microporous Filter Method for the Concentration of Viruses from Water
Author:
Ikner, Luisa
Issue Date:
2010
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Waterborne enteric viruses are transmitted via the fecal-oral route and have been isolated from various types of water ranging from sewage to tap water. Water matrices characterized by low levels of organic material (e.g. clean surface water and tap water) contain fewer numbers of viruses than sewage and wastewater effluents. A number of methods have been developed to concentrate, elute (recover), and re-concentrate viruses from water. The goal of this dissertation is two-fold. An extensive review of the literature is provided in Appendix A that focuses on method development in the three aforementioned areas. A review of this detail has not been conducted in over two decades, and as such will contribute to the fields of water quality and environmental virology. Second, a novel and inexpensive method for the concentration of viruses (MS2 coliphage, poliovirus 1, echovirus 1, Coxsackievirus B5, and adenovirus 2) is presented in Appendix B. The method uses a new electropositive filter (comprised of nanoalumina fibers) for the capture of viruses from 20-L volumes of dechlorinated tap water. Average filter retention efficiencies for each of the viruses was ≥ 99%. Viruses that are adsorbed to filters must then be recovered (eluted). A number of inorganic solutions were evaluated for this purpose, the most effective being a moderately alkaline (pH 9.3) glycine buffered-polyphosphate solution. Secondary reconcetration of the eluates was performed using an optimized ultrafiltration method (Centricon Plus-70, Millipore, Billerica, MA), and achieved final concentrates volumes of 3.3 ± 0.3 mL. Total method efficiencies meeting the project recovery goal of ≥ 50% were obtained for each of the tested viruses except for MS2 coliphage at high input titers (45 ± 15%) and adenovirus 2 (14 ± 4%). Appendix C provides the Standard Operating Procedures, sample calculations, and detailed data for the experiments conducted. Appendix D details the steps taken towards optimizing the secondary concentration procedure in effort to meet the 50% recovery goal.
Type:
text; Electronic Dissertation
Keywords:
concentration; elution; filter; NanoCeram; viruses; water
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Soil, Water & Environmental Science; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Gerba, Charles

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleDevelopment of a New Microporous Filter Method for the Concentration of Viruses from Wateren_US
dc.creatorIkner, Luisaen_US
dc.contributor.authorIkner, Luisaen_US
dc.date.issued2010en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWaterborne enteric viruses are transmitted via the fecal-oral route and have been isolated from various types of water ranging from sewage to tap water. Water matrices characterized by low levels of organic material (e.g. clean surface water and tap water) contain fewer numbers of viruses than sewage and wastewater effluents. A number of methods have been developed to concentrate, elute (recover), and re-concentrate viruses from water. The goal of this dissertation is two-fold. An extensive review of the literature is provided in Appendix A that focuses on method development in the three aforementioned areas. A review of this detail has not been conducted in over two decades, and as such will contribute to the fields of water quality and environmental virology. Second, a novel and inexpensive method for the concentration of viruses (MS2 coliphage, poliovirus 1, echovirus 1, Coxsackievirus B5, and adenovirus 2) is presented in Appendix B. The method uses a new electropositive filter (comprised of nanoalumina fibers) for the capture of viruses from 20-L volumes of dechlorinated tap water. Average filter retention efficiencies for each of the viruses was ≥ 99%. Viruses that are adsorbed to filters must then be recovered (eluted). A number of inorganic solutions were evaluated for this purpose, the most effective being a moderately alkaline (pH 9.3) glycine buffered-polyphosphate solution. Secondary reconcetration of the eluates was performed using an optimized ultrafiltration method (Centricon Plus-70, Millipore, Billerica, MA), and achieved final concentrates volumes of 3.3 ± 0.3 mL. Total method efficiencies meeting the project recovery goal of ≥ 50% were obtained for each of the tested viruses except for MS2 coliphage at high input titers (45 ± 15%) and adenovirus 2 (14 ± 4%). Appendix C provides the Standard Operating Procedures, sample calculations, and detailed data for the experiments conducted. Appendix D details the steps taken towards optimizing the secondary concentration procedure in effort to meet the 50% recovery goal.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectconcentrationen_US
dc.subjectelutionen_US
dc.subjectfilteren_US
dc.subjectNanoCeramen_US
dc.subjectvirusesen_US
dc.subjectwateren_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairGerba, Charlesen_US
dc.contributor.committeememberCurry, Joanen_US
dc.contributor.committeememberReynolds, Kellyen_US
dc.contributor.committeememberBright, Kellyen_US
dc.identifier.proquest10971en_US
dc.identifier.oclc752260951en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.