Persistent Link:
http://hdl.handle.net/10150/196101
Title:
Hafnium Oxide Films for Application as Gate Dielectric
Author:
Hsu, Shuo-Lin
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The deposition and characterization of HfO2 films for potential application as a high-k gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-k films. The changes in the film properties due to the annealing are also discussed in this work.Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposit films are amorphous, regardless of the film thickness. During postdeposition annealing, the thicker films crystallized at lower temperature 600 C, and ultra-Thin (5.8 nm) film crystallized at higher temperature (600 - 720 C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the $10-20$ nm annealed films, and high temperature phase (tetragonal) formed in the ultra--thin annealed HfO2 film. The TEM cross-section studies of as deposited samples show the interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment.I-V measurements show the leakage current density of the Al/as deposit-HfO2/Si MOS diode is of the order of 10^{-3} A/cm^2, which is two orders of magnitude lower than that of ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to EOT (equivalent oxide thickness)= 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward negative voltage. Reliability tests show that the HfO2* 0films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging.This study concluded that the sputtered HfO2 films are amorphous as deposited. The postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.
Type:
text; Electronic Dissertation
Keywords:
Materials Science & Engineering
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Materials Science & Engineering; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Jackson, Kenneth A.
Committee Chair:
Jackson, Kenneth A.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleHafnium Oxide Films for Application as Gate Dielectricen_US
dc.creatorHsu, Shuo-Linen_US
dc.contributor.authorHsu, Shuo-Linen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe deposition and characterization of HfO2 films for potential application as a high-k gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-k films. The changes in the film properties due to the annealing are also discussed in this work.Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposit films are amorphous, regardless of the film thickness. During postdeposition annealing, the thicker films crystallized at lower temperature 600 C, and ultra-Thin (5.8 nm) film crystallized at higher temperature (600 - 720 C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the $10-20$ nm annealed films, and high temperature phase (tetragonal) formed in the ultra--thin annealed HfO2 film. The TEM cross-section studies of as deposited samples show the interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment.I-V measurements show the leakage current density of the Al/as deposit-HfO2/Si MOS diode is of the order of 10^{-3} A/cm^2, which is two orders of magnitude lower than that of ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to EOT (equivalent oxide thickness)= 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward negative voltage. Reliability tests show that the HfO2* 0films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging.This study concluded that the sputtered HfO2 films are amorphous as deposited. The postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectMaterials Science & Engineeringen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMaterials Science & Engineeringen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorJackson, Kenneth A.en_US
dc.contributor.chairJackson, Kenneth A.en_US
dc.contributor.committeememberPotter, B. G.en_US
dc.contributor.committeememberLucas, Pierreen_US
dc.contributor.committeememberO'Hanlon, John F.en_US
dc.identifier.proquest1344en_US
dc.identifier.oclc659746246en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.