Mapping Carbon Dioxide Flux in Semiarid Grasslands Using Optical Remote Sensing

Persistent Link:
http://hdl.handle.net/10150/196083
Title:
Mapping Carbon Dioxide Flux in Semiarid Grasslands Using Optical Remote Sensing
Author:
Holifield Collins, Chandra
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Increasing atmospheric levels of carbon dioxide (CO2) and the potential impact on climate change has caused an increased effort to more accurately quantify terrestrial sources and sinks. Semiarid grasslands cover a significant portion of the Earth's land surface and may be an important sink for atmospheric CO2. This study was conducted to examine the role semiarid grasslands play in the carbon cycle. The relation between surface reflectance and temperature obtained from satellite imagery was used to determine a Water Deficit Index (WDI) to estimate distributed plant transpiration rates for a point in time. Due to the relationship between transpiration and plant CO2 uptake, WDI was directly related to CO2 flux. Satellite images were acquired for a five-year period (1996-2000) during which transpiration and net CO2 flux were measured for a semiarid grassland site in southeastern Arizona. Manual and automatic chamber data were also collected in 2005 and 2006 and used to assess the spatial variability of nighttime soil respiration. Spatial analysis showed the most influential factor affecting nighttime respiration was aspect, where flux from North-facing slopes was significantly (P < 0.05) higher than on South-facing slopes. A strong linear relationship (R2 = 0.97) existed between WDI-derived instantaneous net CO2 flux and daytime net CO2 flux estimates, and was used to generate maps of distributed daytime net CO2 flux. A linear relationship (R2 = 0.88) was also found between daytime and nighttime net CO2 flux, and used in combination with maps of daytime net CO2 flux to create maps of daily net CO2 flux. This study indicated that remote sensing offers an operational, physically-based means of obtaining daily net CO2 flux in semiarid grasslands.
Type:
text; Electronic Dissertation
Keywords:
Soil, Water & Environmental Science
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Soil, Water & Environmental Science; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Huete, Alfredo
Committee Chair:
Huete, Alfredo

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMapping Carbon Dioxide Flux in Semiarid Grasslands Using Optical Remote Sensingen_US
dc.creatorHolifield Collins, Chandraen_US
dc.contributor.authorHolifield Collins, Chandraen_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIncreasing atmospheric levels of carbon dioxide (CO2) and the potential impact on climate change has caused an increased effort to more accurately quantify terrestrial sources and sinks. Semiarid grasslands cover a significant portion of the Earth's land surface and may be an important sink for atmospheric CO2. This study was conducted to examine the role semiarid grasslands play in the carbon cycle. The relation between surface reflectance and temperature obtained from satellite imagery was used to determine a Water Deficit Index (WDI) to estimate distributed plant transpiration rates for a point in time. Due to the relationship between transpiration and plant CO2 uptake, WDI was directly related to CO2 flux. Satellite images were acquired for a five-year period (1996-2000) during which transpiration and net CO2 flux were measured for a semiarid grassland site in southeastern Arizona. Manual and automatic chamber data were also collected in 2005 and 2006 and used to assess the spatial variability of nighttime soil respiration. Spatial analysis showed the most influential factor affecting nighttime respiration was aspect, where flux from North-facing slopes was significantly (P < 0.05) higher than on South-facing slopes. A strong linear relationship (R2 = 0.97) existed between WDI-derived instantaneous net CO2 flux and daytime net CO2 flux estimates, and was used to generate maps of distributed daytime net CO2 flux. A linear relationship (R2 = 0.88) was also found between daytime and nighttime net CO2 flux, and used in combination with maps of daytime net CO2 flux to create maps of daily net CO2 flux. This study indicated that remote sensing offers an operational, physically-based means of obtaining daily net CO2 flux in semiarid grasslands.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectSoil, Water & Environmental Scienceen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHuete, Alfredoen_US
dc.contributor.chairHuete, Alfredoen_US
dc.contributor.committeememberMoran, Susanen_US
dc.contributor.committeememberRasmussen, Craigen_US
dc.contributor.committeememberThome, Kurtisen_US
dc.identifier.proquest1874en_US
dc.identifier.oclc659746432en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.