Bacterial Endosymbionts of Endophytic Fungi: Diversity, Phylogenetic Structure, and Biotic Interactions

Persistent Link:
http://hdl.handle.net/10150/196079
Title:
Bacterial Endosymbionts of Endophytic Fungi: Diversity, Phylogenetic Structure, and Biotic Interactions
Author:
Hoffman, Michele Therese
Issue Date:
2010
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation comprises a series of studies designed to explore the associations between plants and the endophytic fungi they harbor in their above-ground tissues. By viewing endophyte diversity in ecologically and economically important hosts through the lenses of phylogenetic biology, microbiology, and biotechnology, this body of work links plant ecology with newly discovered symbiotic units comprised of endophytic fungi and the bacteria that inhabit them.This work begins with a large-scale survey of endophytic fungi from native and non-native Cupressaceae in Arizona and North Carolina. After isolating over 400 strains of endophytes, I inferred the evolutionary relationships among these fungi using both Bayesian and parsimony analyses. In addition to showing that native and introduced plants contained different endophytes, I found that the endophytes themselves harbor additional microbial symbionts, recovering members of the beta- and gamma-proteobacterial orders Burkholderiales, Xanthomonadales, and Enterobacteriales and numerous novel, previously uncultured bacteria. This work finds that phylogenetically diverse bacterial endosymbionts occur within living hyphae of multiple major lineages of ascomycetous endophytes.A focus on 29 fungal/bacterial associations revealed that bacterial and fungal phylogenies are incongruent with each other and did not reflect the phylogenetic relationships of host plants. Instead, both endophyte and bacterial assemblages were strongly structured by geography, consistent with local horizontal transmission. Endophytes could be cured of their bacterial endosymbionts using antibiotics, providing a tractable experimental system for comparisons of growth and metabolite production under varying conditions. Studies of seven focal fungal/bacterial pairs showed that bacteria could significantly alter growth of fungi at different nutrient and temperature levels in vitro, and that different members of the same bacterial lineages interact with different fungi in different ways.Focusing on one isolate, I then describe for the first time the production of indole-3-acetic acid (IAA) by a non-pathogenic, foliar endophytic fungus (Pestalotiopsis neglecta), suggesting a potential benefit to the host plant harboring this fungus. I show that this fungus is inhabited by an endohyphal bacterium (Luteibacter sp.) and demonstrate that mycelium containing this bacterium produces significantly more IAA in vitro than the fungus alone. I predict that the general biochemical pathway used by the fungal-endohyphal complex is L-tryptophan-dependent and measure effects of IAA production in vivo, focusing on root and shoot growth in tomato seedlings.
Type:
text; Electronic Dissertation
Keywords:
auxin; Cupressaceae; endohyphal; fungal endophyte; phylogenetics; symbiosis
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Plant Science; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Arnold, Anne Elizabeth
Committee Chair:
Arnold, Anne Elizabeth

Full metadata record

DC FieldValue Language
dc.language.isoenen_US
dc.titleBacterial Endosymbionts of Endophytic Fungi: Diversity, Phylogenetic Structure, and Biotic Interactionsen_US
dc.creatorHoffman, Michele Thereseen_US
dc.contributor.authorHoffman, Michele Thereseen_US
dc.date.issued2010en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation comprises a series of studies designed to explore the associations between plants and the endophytic fungi they harbor in their above-ground tissues. By viewing endophyte diversity in ecologically and economically important hosts through the lenses of phylogenetic biology, microbiology, and biotechnology, this body of work links plant ecology with newly discovered symbiotic units comprised of endophytic fungi and the bacteria that inhabit them.This work begins with a large-scale survey of endophytic fungi from native and non-native Cupressaceae in Arizona and North Carolina. After isolating over 400 strains of endophytes, I inferred the evolutionary relationships among these fungi using both Bayesian and parsimony analyses. In addition to showing that native and introduced plants contained different endophytes, I found that the endophytes themselves harbor additional microbial symbionts, recovering members of the beta- and gamma-proteobacterial orders Burkholderiales, Xanthomonadales, and Enterobacteriales and numerous novel, previously uncultured bacteria. This work finds that phylogenetically diverse bacterial endosymbionts occur within living hyphae of multiple major lineages of ascomycetous endophytes.A focus on 29 fungal/bacterial associations revealed that bacterial and fungal phylogenies are incongruent with each other and did not reflect the phylogenetic relationships of host plants. Instead, both endophyte and bacterial assemblages were strongly structured by geography, consistent with local horizontal transmission. Endophytes could be cured of their bacterial endosymbionts using antibiotics, providing a tractable experimental system for comparisons of growth and metabolite production under varying conditions. Studies of seven focal fungal/bacterial pairs showed that bacteria could significantly alter growth of fungi at different nutrient and temperature levels in vitro, and that different members of the same bacterial lineages interact with different fungi in different ways.Focusing on one isolate, I then describe for the first time the production of indole-3-acetic acid (IAA) by a non-pathogenic, foliar endophytic fungus (Pestalotiopsis neglecta), suggesting a potential benefit to the host plant harboring this fungus. I show that this fungus is inhabited by an endohyphal bacterium (Luteibacter sp.) and demonstrate that mycelium containing this bacterium produces significantly more IAA in vitro than the fungus alone. I predict that the general biochemical pathway used by the fungal-endohyphal complex is L-tryptophan-dependent and measure effects of IAA production in vivo, focusing on root and shoot growth in tomato seedlings.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectauxinen_US
dc.subjectCupressaceaeen_US
dc.subjectendohyphalen_US
dc.subjectfungal endophyteen_US
dc.subjectphylogeneticsen_US
dc.subjectsymbiosisen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorArnold, Anne Elizabethen_US
dc.contributor.chairArnold, Anne Elizabethen_US
dc.contributor.committeememberBronstein, Judith L.en_US
dc.contributor.committeememberOrbach, Marc J.en_US
dc.identifier.proquest11007en_US
dc.identifier.oclc659754953en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.