A Molecular Model For Transcriptional Regulation of BRCA-1 Expression

Persistent Link:
http://hdl.handle.net/10150/196075
Title:
A Molecular Model For Transcriptional Regulation of BRCA-1 Expression
Author:
Hockings, Chi-Fan Ku
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Breast cancer is the second leading cause of cancer-related death in women. Mutations in the tumor suppressor gene BRCA-1 confer a high risk of breast tumor development. However, in sporadic breast cancers, which represent 90-95% of breast cancer cases, BRCA-1 expression is downregulated in the absence of mutations in the BRCA-1 gene. This suggests that epigenetic effectors may contribute to disruption of BRCA-1 expression and the onset of mammary tumors.Prototypical environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been shown to alter mammary gland development, act as endocrine disruptors and tumor promoters. Population studies detected accumulation of TCDD in women's adipose tissue and breast milk. Moreover, sporadic breast tissue exhibited statistically significant higher levels of PAH-DNA adducts. Based on this information, we examined the effect of B[a]P on the tumor suppressor BRCA-1and observed that exposure to B[a]P led to repression of BRCA-1 transcription through a p53-dependent mechanism. We have also demonstrated that 17β-estradiol (E2) stimulated the recruitment of ERα and AP-1 family members to a region of the BRCA-1 promoter flanking an AP-1-like site. However, accumulation of p53 prevented E2-mediated BRCA-1 transcription and recruitment of ERα, potentially providing one mechanism of B[a]P-mediated repression.In addition, the effects of B[a]P and TCDD are mediated through binding of the liganded aromatic hydrocarbon receptor (AhR) to dioxin or xenobiotic-responsive elements (XRE). We have evidence that suggests B[a]P and TCDD may modulate repression of E2-stimulated BRCA-1 expression through 1) binding of the liganded AhR to XREs on the BRCA-1 promoter and 2) preventing promoter occupancy by p300 and SRC-1.Taken together, the data presented here suggest that the transcriptional regulation of BRCA-1 is complex and involves modulation of the recruitment of ERα, AhR, p53, and their cofactors. An important implication of these findings is a greater understanding of the role of ERα, AhR, and p53 in regulation of BRCA-1 which could lead to the development of therapeutic strategies that target these interactions to enhance upregulation of BRCA-1 expression in sporadic breast tumors.
Type:
text; Electronic Dissertation
Keywords:
BRCA-1; Estrogen receptor alpha; Aromatic Hydrocarbon Receptor
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Cancer Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Romagnolo, Donato F
Committee Chair:
Romagnolo, Donato F

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleA Molecular Model For Transcriptional Regulation of BRCA-1 Expressionen_US
dc.creatorHockings, Chi-Fan Kuen_US
dc.contributor.authorHockings, Chi-Fan Kuen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractBreast cancer is the second leading cause of cancer-related death in women. Mutations in the tumor suppressor gene BRCA-1 confer a high risk of breast tumor development. However, in sporadic breast cancers, which represent 90-95% of breast cancer cases, BRCA-1 expression is downregulated in the absence of mutations in the BRCA-1 gene. This suggests that epigenetic effectors may contribute to disruption of BRCA-1 expression and the onset of mammary tumors.Prototypical environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been shown to alter mammary gland development, act as endocrine disruptors and tumor promoters. Population studies detected accumulation of TCDD in women's adipose tissue and breast milk. Moreover, sporadic breast tissue exhibited statistically significant higher levels of PAH-DNA adducts. Based on this information, we examined the effect of B[a]P on the tumor suppressor BRCA-1and observed that exposure to B[a]P led to repression of BRCA-1 transcription through a p53-dependent mechanism. We have also demonstrated that 17β-estradiol (E2) stimulated the recruitment of ERα and AP-1 family members to a region of the BRCA-1 promoter flanking an AP-1-like site. However, accumulation of p53 prevented E2-mediated BRCA-1 transcription and recruitment of ERα, potentially providing one mechanism of B[a]P-mediated repression.In addition, the effects of B[a]P and TCDD are mediated through binding of the liganded aromatic hydrocarbon receptor (AhR) to dioxin or xenobiotic-responsive elements (XRE). We have evidence that suggests B[a]P and TCDD may modulate repression of E2-stimulated BRCA-1 expression through 1) binding of the liganded AhR to XREs on the BRCA-1 promoter and 2) preventing promoter occupancy by p300 and SRC-1.Taken together, the data presented here suggest that the transcriptional regulation of BRCA-1 is complex and involves modulation of the recruitment of ERα, AhR, p53, and their cofactors. An important implication of these findings is a greater understanding of the role of ERα, AhR, and p53 in regulation of BRCA-1 which could lead to the development of therapeutic strategies that target these interactions to enhance upregulation of BRCA-1 expression in sporadic breast tumors.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectBRCA-1en_US
dc.subjectEstrogen receptor alphaen_US
dc.subjectAromatic Hydrocarbon Receptoren_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCancer Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRomagnolo, Donato Fen_US
dc.contributor.chairRomagnolo, Donato Fen_US
dc.contributor.committeememberBloom, Johnen_US
dc.contributor.committeememberHoyer, Patriciaen_US
dc.contributor.committeememberMcQueen, Charleneen_US
dc.contributor.committeememberWhitesell, Lukeen_US
dc.identifier.proquest1352en_US
dc.identifier.oclc137355186en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.