The University of Arizona Campus Repository
>
UA Graduate and Undergraduate Research
>
UA Theses and Dissertations
>
Dissertations
>

# Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates

- Persistent Link:
- http://hdl.handle.net/10150/195953
- Title:
- Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates
- Author:
- Issue Date:
- 2006
- Publisher:
- Rights:
- Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
- Abstract:
- Let X be a simply connected, compact Riemannian symmetric space. We can represent X as the homogeneous space U/K, where U is a simply connected compact Lie group, and K is the fixed point set of an involution θ of U. Let G be the complexification of U. We consider the intersections of the image of the Cartan embedding Φ : U/K → U ⊂ G : uK → uu⁻ᶿ with the strata of the Birkhoff (or triangular, or LDU) decomposition G = ⫫(w∈W) ∑(G/w), ∑(G/w) = N⁻wHN⁺ relative to a θ-stable decomposition of the Lie algebra, g = n⁻ ⊕h ⊕ n⁺. For a generic element g in this intersection, g ∈ Φ(U/K) ∩ ∑(G/1), this yields a unique triangular factorization g = ldu. Our main contribution is to produce explicit formulas for the diagonal term d in classical cases, using Cayley coordinates (this choice of coordinate is motivated by considerations beyond sheer convenience). These formulas have several applications: 1) we can compute π₀(Φ(U/K) \ ∩ ∑(G/1) ) explicitly; 2) we can compute ʃ(Φ(U/K))ᵃΦ^-iλ (where ᵃΦ is the positive part of d) using elementary techniques in rank 1 cases; 3) they are useful in explicitly calculating Evens-Lu Poisson structures on U=K (see [Caine(2006)]). Our set-up involves choosing specific representations of the various u in su(n;C) that are compatible with θ; that is, θ fixes each of the subspaces n⁻; h; and n⁺ which, in our setup, always consist of strictly lower triangular, diagonal, and strictly upper triangular matrices, respectively. The formulas contain determinants such as det(1 + X), where X is in ip, the -1-eigenspace of θ acting on the Lie algebra u. Due to the relatively sparse nature of these matrices, these determinants are often easily calculable, and we illustrate this with many examples.
- Type:
- text; Electronic Dissertation
- Keywords:
- Degree Name:
- PhD
- Degree Level:
- doctoral
- Degree Program:
- Degree Grantor:
- University of Arizona
- Advisor:
- Committee Chair:
- Pickrell, Douglas M.

# Full metadata record

DC Field | Value | Language |
---|---|---|

dc.language.iso | EN | en_US |

dc.title | Compact Symmetric Spaces, Triangular Factorization, and Cayley Coordinates | en_US |

dc.creator | Habermas, Derek | en_US |

dc.contributor.author | Habermas, Derek | en_US |

dc.date.issued | 2006 | en_US |

dc.publisher | The University of Arizona. | en_US |

dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en_US |

dc.description.abstract | Let X be a simply connected, compact Riemannian symmetric space. We can represent X as the homogeneous space U/K, where U is a simply connected compact Lie group, and K is the fixed point set of an involution θ of U. Let G be the complexification of U. We consider the intersections of the image of the Cartan embedding Φ : U/K → U ⊂ G : uK → uu⁻ᶿ with the strata of the Birkhoff (or triangular, or LDU) decomposition G = ⫫(w∈W) ∑(G/w), ∑(G/w) = N⁻wHN⁺ relative to a θ-stable decomposition of the Lie algebra, g = n⁻ ⊕h ⊕ n⁺. For a generic element g in this intersection, g ∈ Φ(U/K) ∩ ∑(G/1), this yields a unique triangular factorization g = ldu. Our main contribution is to produce explicit formulas for the diagonal term d in classical cases, using Cayley coordinates (this choice of coordinate is motivated by considerations beyond sheer convenience). These formulas have several applications: 1) we can compute π₀(Φ(U/K) \ ∩ ∑(G/1) ) explicitly; 2) we can compute ʃ(Φ(U/K))ᵃΦ^-iλ (where ᵃΦ is the positive part of d) using elementary techniques in rank 1 cases; 3) they are useful in explicitly calculating Evens-Lu Poisson structures on U=K (see [Caine(2006)]). Our set-up involves choosing specific representations of the various u in su(n;C) that are compatible with θ; that is, θ fixes each of the subspaces n⁻; h; and n⁺ which, in our setup, always consist of strictly lower triangular, diagonal, and strictly upper triangular matrices, respectively. The formulas contain determinants such as det(1 + X), where X is in ip, the -1-eigenspace of θ acting on the Lie algebra u. Due to the relatively sparse nature of these matrices, these determinants are often easily calculable, and we illustrate this with many examples. | en_US |

dc.type | text | en_US |

dc.type | Electronic Dissertation | en_US |

dc.subject | SYMMETRIC SPACES | en_US |

dc.subject | CAYLEY | en_US |

dc.subject | BIRKHOFF DECOMPOSITION | en_US |

thesis.degree.name | PhD | en_US |

thesis.degree.level | doctoral | en_US |

thesis.degree.discipline | Mathematics | en_US |

thesis.degree.discipline | Graduate College | en_US |

thesis.degree.grantor | University of Arizona | en_US |

dc.contributor.advisor | Pickrell, Douglas M. | en_US |

dc.contributor.chair | Pickrell, Douglas M. | en_US |

dc.contributor.committeemember | Bressler, Paul | en_US |

dc.contributor.committeemember | Foth, Philip | en_US |

dc.contributor.committeemember | Glickenstein, David | en_US |

dc.contributor.committeemember | Otto, Michael | en_US |

dc.identifier.proquest | 1656 | en_US |

All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.