Persistent Link:
http://hdl.handle.net/10150/195845
Title:
Almost Poisson Brackets for Nonholonomic Systems on Lie Groups
Author:
Garcia-Naranjo, Luis Constantino
Issue Date:
2007
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We present a geometric construction of almost Poisson brackets for nonholonomic mechanical systems whose configuration space is a Lie group G. We study the so-called LL and LR systems where the kinetic energy defines a left invariant metric on G and the constraints are invariant with respect to left (respectively right) translation on G.For LL systems, the equations on the momentum phase space, T*G, can be left translated onto g*, the dual space of the Lie algebra g. We show that the reduced equations on g* can be cast in Poisson form with respect to an almost Poisson bracket that is obtained by projecting the standard Lie-Poisson bracket onto the constraint space.For LR systems, we use ideas of semidirect product reduction to transfer the equations on T*G into the dual Lie algebra, s*, of a semidirect product. This provides a natural Lie algebraic setting for the equations of motion commonly found in the literature. We show that these equations can also be cast in Poisson form with respect to an almost Poisson bracket that is obtained by projecting the Lie-Poisson structure on s* onto a constraint submanifold.In both cases the constraint functions are Casimirs of the bracket and are satisfied automatically. Our construction is a natural generalization of the classical ideas of Lie-Poisson and semidirect product reduction to the nonholonomic case. It also sets a convenient stage for the study of Hamiltonization of certain nonholonomic systems.Our examples include the Suslov and the Veselova problems of constrained motion of a rigid body, and the Chaplygin sleigh.In addition we study the almost Poisson reduction of the Chaplygin sphere. We show that the bracket given byBorisov and Mamaev is obtained by reducing a nonstandard almost Poisson bracket that is obtained by projecting a non-canonical bivector onto the constraint submanifold using the Lagrange-D'Alembert principle.The examples that we treat show that it is possible to cast the reduced equations of motion of certain nonholonomic systems in Hamiltonian form (in the Poisson formulation) either by multiplication by a conformal factor, by the use of nonstandard brackets or simply by reduction methods.
Type:
text; Electronic Dissertation
Keywords:
nonholonomic; almost Poisson bracket; Lie groups; mechanics; Hamiltonization; reduction
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Flaschka, Hermann
Committee Chair:
Flaschka, Hermann

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleAlmost Poisson Brackets for Nonholonomic Systems on Lie Groupsen_US
dc.creatorGarcia-Naranjo, Luis Constantinoen_US
dc.contributor.authorGarcia-Naranjo, Luis Constantinoen_US
dc.date.issued2007en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe present a geometric construction of almost Poisson brackets for nonholonomic mechanical systems whose configuration space is a Lie group G. We study the so-called LL and LR systems where the kinetic energy defines a left invariant metric on G and the constraints are invariant with respect to left (respectively right) translation on G.For LL systems, the equations on the momentum phase space, T*G, can be left translated onto g*, the dual space of the Lie algebra g. We show that the reduced equations on g* can be cast in Poisson form with respect to an almost Poisson bracket that is obtained by projecting the standard Lie-Poisson bracket onto the constraint space.For LR systems, we use ideas of semidirect product reduction to transfer the equations on T*G into the dual Lie algebra, s*, of a semidirect product. This provides a natural Lie algebraic setting for the equations of motion commonly found in the literature. We show that these equations can also be cast in Poisson form with respect to an almost Poisson bracket that is obtained by projecting the Lie-Poisson structure on s* onto a constraint submanifold.In both cases the constraint functions are Casimirs of the bracket and are satisfied automatically. Our construction is a natural generalization of the classical ideas of Lie-Poisson and semidirect product reduction to the nonholonomic case. It also sets a convenient stage for the study of Hamiltonization of certain nonholonomic systems.Our examples include the Suslov and the Veselova problems of constrained motion of a rigid body, and the Chaplygin sleigh.In addition we study the almost Poisson reduction of the Chaplygin sphere. We show that the bracket given byBorisov and Mamaev is obtained by reducing a nonstandard almost Poisson bracket that is obtained by projecting a non-canonical bivector onto the constraint submanifold using the Lagrange-D'Alembert principle.The examples that we treat show that it is possible to cast the reduced equations of motion of certain nonholonomic systems in Hamiltonian form (in the Poisson formulation) either by multiplication by a conformal factor, by the use of nonstandard brackets or simply by reduction methods.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectnonholonomicen_US
dc.subjectalmost Poisson bracketen_US
dc.subjectLie groupsen_US
dc.subjectmechanicsen_US
dc.subjectHamiltonizationen_US
dc.subjectreductionen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFlaschka, Hermannen_US
dc.contributor.chairFlaschka, Hermannen_US
dc.contributor.committeememberGoriely, Alainen_US
dc.contributor.committeememberErcolani, Nicholasen_US
dc.contributor.committeememberNewell, Alanen_US
dc.identifier.proquest2131en_US
dc.identifier.oclc659747240en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.