The Speed of Associative Learning and Retrieval in Humans and Non-Human Primates

Persistent Link:
http://hdl.handle.net/10150/195717
Title:
The Speed of Associative Learning and Retrieval in Humans and Non-Human Primates
Author:
Ellmore, Timothy Michael
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The conversion of a memory from an initially fragile state to an enduring representation requires cellular, molecular, and systems-level brain network changes. This reorganization is hypothesized to involve time-dependent neuroanatomical changes that may differentially support some types of remote versus recent memory, and may also influence the latency to decide and complete responses during retrieval. To quantify the timecourse of learning and retrieval after different retention durations, a paradigm is developed to measure in humans and monkeys the retrieval speed of visuomotor associations, which require an intact hippocampus for initial acquisition but not for retrieval after days or weeks. Two components of retrieval speed, a decision time to initiate movement and a velocity-dependent movement completion time to complete a motor response, are shown to change differently relative to a pre-retention baseline. Movement completion times decrease across repetitions within single learning session, and continue to decrease from the level reached at the end of learning following retention. Decision times also decrease within the learning session, but increase on the first post-retention retrieval attempt as a function of retention interval duration. Extensive practice is required for decision times to reach a level below that obtained at the end of learning, and the transition from a long- to short-latency decision depends on the number and spacing of practice trials. The findings are discussed in a framework in which post-retention processing time is influenced by the speed of visual identification, the time to retrieve the associative relationship from long-term memory, and the time to plan and execute a motor response. The creation of sparser, long-lasting visual form representations and strengthened cortico-striatal connections predict behavioral efficiency gains in visual identification and motor responses after learning. Decision times could be fast and automatic following extensive practice when the neural representation may become stored permanently in cortico-cortical and cortico-striatal linkages, or could increase after retention because of several cognitive and neural factors, including interference and frontal inhibition of the hippocampal system to prevent new learning before choice feedback. The experimental results are discussed in the context of the existing literature on memory consolidation.
Type:
text; Electronic Dissertation
Keywords:
visuomotor associative learning; memory retrieval; reaction times; primate behavior; hippocampus; memory consolidation
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Psychology; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Nadel, Lynn

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleThe Speed of Associative Learning and Retrieval in Humans and Non-Human Primatesen_US
dc.creatorEllmore, Timothy Michaelen_US
dc.contributor.authorEllmore, Timothy Michaelen_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe conversion of a memory from an initially fragile state to an enduring representation requires cellular, molecular, and systems-level brain network changes. This reorganization is hypothesized to involve time-dependent neuroanatomical changes that may differentially support some types of remote versus recent memory, and may also influence the latency to decide and complete responses during retrieval. To quantify the timecourse of learning and retrieval after different retention durations, a paradigm is developed to measure in humans and monkeys the retrieval speed of visuomotor associations, which require an intact hippocampus for initial acquisition but not for retrieval after days or weeks. Two components of retrieval speed, a decision time to initiate movement and a velocity-dependent movement completion time to complete a motor response, are shown to change differently relative to a pre-retention baseline. Movement completion times decrease across repetitions within single learning session, and continue to decrease from the level reached at the end of learning following retention. Decision times also decrease within the learning session, but increase on the first post-retention retrieval attempt as a function of retention interval duration. Extensive practice is required for decision times to reach a level below that obtained at the end of learning, and the transition from a long- to short-latency decision depends on the number and spacing of practice trials. The findings are discussed in a framework in which post-retention processing time is influenced by the speed of visual identification, the time to retrieve the associative relationship from long-term memory, and the time to plan and execute a motor response. The creation of sparser, long-lasting visual form representations and strengthened cortico-striatal connections predict behavioral efficiency gains in visual identification and motor responses after learning. Decision times could be fast and automatic following extensive practice when the neural representation may become stored permanently in cortico-cortical and cortico-striatal linkages, or could increase after retention because of several cognitive and neural factors, including interference and frontal inhibition of the hippocampal system to prevent new learning before choice feedback. The experimental results are discussed in the context of the existing literature on memory consolidation.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectvisuomotor associative learningen_US
dc.subjectmemory retrievalen_US
dc.subjectreaction timesen_US
dc.subjectprimate behavioren_US
dc.subjecthippocampusen_US
dc.subjectmemory consolidationen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePsychologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairNadel, Lynnen_US
dc.contributor.committeememberNadel, Lynnen_US
dc.contributor.committeememberFugelvand, Andrewen_US
dc.contributor.committeememberGlisky, Elizabethen_US
dc.contributor.committeememberGothard, Katalinen_US
dc.contributor.committeememberPeterson, Maryen_US
dc.identifier.proquest1892en_US
dc.identifier.oclc659746451en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.