An Investigation of Lithospheric Structure and Evolution in Convergent Orogenic Systems using Seismic Receiver Functions and Surface Wave Analysis

Persistent Link:
http://hdl.handle.net/10150/195366
Title:
An Investigation of Lithospheric Structure and Evolution in Convergent Orogenic Systems using Seismic Receiver Functions and Surface Wave Analysis
Author:
Calkins, Josh A
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Whether by accretion, magmatic addition, or refinement of more mafic lithologies, continental arcs are likely zones for the creation of "average" continental crust with intermediate silica content. This dissertation contains the results of broadband seismic studies carried out in two field areas, an active subduction zone and the remnants of an extinct arc, with the aim of understanding lithospheric evolution at convergent margins. The analytical techniques of receiver function calculation and surface wave tomography are applied to data sets collected above the Andean subduction zone in Chile and western Argentina and in the Coast Mountains Batholith of central British Columbia. We present the first in-depth comparison of receiver functions calculated using the high frequencies available in records of intermediate-depth local earthquakes with those calculated from the lower frequency data in records of larger teleseismic events. The comparison reveals that the lower crust beneath the Western Sierras Pampeanas contains a gradational velocity increase over ~20km above a small velocity step at the Moho. Surface wave tomography confirms the existence of an unusually high velocity anomaly in the mantle above the slab and yields estimates of slab thickness on the order of 50 km. To the south of the flat slab region, we see evidence of active mantle wedge convection above the steep slab, but no evidence of the lithosphere-asthenosphere boundary beneath the subducting Nazca plate. In the Coast Mountains Batholith (CMB), receiver functions image a bright, continuous Moho throughout the study region. Combined with petrologic modeling, the receiver function data point toward convective removal of any ultramafic root that formed beneath the CMB. Low absolute shear wave velocities in the upper mantle resolved via surface wave analysis strengthen the case for root removal beneath the eastern section of the CMB. On the far western edge of the CMB, we find evidence of a partially reformed lithosphere outboard of a major tectonic boundary. These observations shed light on the distillation of felsic to intermediate continental crust from more mafic primary magmas in active subduction zones and the eventual return of the complementary ultramafic residuals to the convecting mantle.
Type:
text; Electronic Dissertation
Keywords:
Seismology tectonics lithosphere continent arc
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Geosciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Zandt, George; Beck, Susan L.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleAn Investigation of Lithospheric Structure and Evolution in Convergent Orogenic Systems using Seismic Receiver Functions and Surface Wave Analysisen_US
dc.creatorCalkins, Josh Aen_US
dc.contributor.authorCalkins, Josh Aen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWhether by accretion, magmatic addition, or refinement of more mafic lithologies, continental arcs are likely zones for the creation of "average" continental crust with intermediate silica content. This dissertation contains the results of broadband seismic studies carried out in two field areas, an active subduction zone and the remnants of an extinct arc, with the aim of understanding lithospheric evolution at convergent margins. The analytical techniques of receiver function calculation and surface wave tomography are applied to data sets collected above the Andean subduction zone in Chile and western Argentina and in the Coast Mountains Batholith of central British Columbia. We present the first in-depth comparison of receiver functions calculated using the high frequencies available in records of intermediate-depth local earthquakes with those calculated from the lower frequency data in records of larger teleseismic events. The comparison reveals that the lower crust beneath the Western Sierras Pampeanas contains a gradational velocity increase over ~20km above a small velocity step at the Moho. Surface wave tomography confirms the existence of an unusually high velocity anomaly in the mantle above the slab and yields estimates of slab thickness on the order of 50 km. To the south of the flat slab region, we see evidence of active mantle wedge convection above the steep slab, but no evidence of the lithosphere-asthenosphere boundary beneath the subducting Nazca plate. In the Coast Mountains Batholith (CMB), receiver functions image a bright, continuous Moho throughout the study region. Combined with petrologic modeling, the receiver function data point toward convective removal of any ultramafic root that formed beneath the CMB. Low absolute shear wave velocities in the upper mantle resolved via surface wave analysis strengthen the case for root removal beneath the eastern section of the CMB. On the far western edge of the CMB, we find evidence of a partially reformed lithosphere outboard of a major tectonic boundary. These observations shed light on the distillation of felsic to intermediate continental crust from more mafic primary magmas in active subduction zones and the eventual return of the complementary ultramafic residuals to the convecting mantle.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectSeismology tectonics lithosphere continent arcen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineGeosciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairZandt, Georgeen_US
dc.contributor.chairBeck, Susan L.en_US
dc.contributor.committeememberZandt, Georgeen_US
dc.contributor.committeememberBeck, Susanen_US
dc.contributor.committeememberDucea, Mihaien_US
dc.contributor.committeememberJohnson, Royen_US
dc.contributor.committeememberRichardson, Randyen_US
dc.identifier.proquest2906en_US
dc.identifier.oclc659749944en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.