Multimode Interference in Optical Fibers and Its Applications in Fiber Lasers and Amplifiers

Persistent Link:
http://hdl.handle.net/10150/195318
Title:
Multimode Interference in Optical Fibers and Its Applications in Fiber Lasers and Amplifiers
Author:
Zhu, Xiushan
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Multimode interference (MMI) in optical fibers has been studied and its applications in optical fiber lasers and amplifiers have been proposed and demonstrated in this thesis. When a single-mode fiber is spliced onto a multimode fiber, quasi-reproduction of the field from the single-mode fiber, also called “self-imaging”, occurs periodically along the multimode fiber where the phase differences between the strongly excited modes are very small. The properties of self-imaging in multimode optical fibers have been investigated experimentally and theoretically in this thesis. Key parameters for the design of MMI-based fiber devices have been defined and their corresponding values have been provides for the 50 μm and 105 μm multimode fibers. By use of the self-imaging effect, a fiber laser with single-transverse-mode output while using a multimode rare-earth-doped fiber has been demonstrated as an alternative route to overcome the constraints of an active single-mode fiber. The first MMI-based fiber laser in the world has provided a perfect beam quality (M² = 1.01) and an inherent narrow spectrum (Δλ(3dB) < 0.5 nm). Linearly-polarized narrow-linewidth single-transverse-mode emission has also been obtained from a MMI fiber laser utilizing a single-mode fiber inscribed with a polarization-maintaining fiber Bragg grating. Moreover, high power MMI fiber lasers and amplifiers utilizing rare-earth doped silica large-core multimode fibers have been proposed and their critical features, such as efficiency, optical spectrum, and beam quality, have been investigated. On the other hand, because exclusively excited LP₀, n modes inside the multimode fiber segment are represented by apertured Bessel fields that have long propagation invariant distances, nondiffracting beams can be generated from the MMI-based fiber devices. In this thesis, the principle of generating nondiffracting beams from multimode optical fibers has been described and the propagation characteristics of the generated beams have been investigated. Active MMI fiber devices to generate tens of watts or even hundreds of watts nondiffracting beams have also been proposed.
Type:
text; Electronic Dissertation
Keywords:
fiber lasers and amplifiers; multimode interference; nondiffracting beams; self-imaging
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Peyghambarian, Nasser
Committee Chair:
Peyghambarian, Nasser

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMultimode Interference in Optical Fibers and Its Applications in Fiber Lasers and Amplifiersen_US
dc.creatorZhu, Xiushanen_US
dc.contributor.authorZhu, Xiushanen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractMultimode interference (MMI) in optical fibers has been studied and its applications in optical fiber lasers and amplifiers have been proposed and demonstrated in this thesis. When a single-mode fiber is spliced onto a multimode fiber, quasi-reproduction of the field from the single-mode fiber, also called “self-imaging”, occurs periodically along the multimode fiber where the phase differences between the strongly excited modes are very small. The properties of self-imaging in multimode optical fibers have been investigated experimentally and theoretically in this thesis. Key parameters for the design of MMI-based fiber devices have been defined and their corresponding values have been provides for the 50 μm and 105 μm multimode fibers. By use of the self-imaging effect, a fiber laser with single-transverse-mode output while using a multimode rare-earth-doped fiber has been demonstrated as an alternative route to overcome the constraints of an active single-mode fiber. The first MMI-based fiber laser in the world has provided a perfect beam quality (M² = 1.01) and an inherent narrow spectrum (Δλ(3dB) < 0.5 nm). Linearly-polarized narrow-linewidth single-transverse-mode emission has also been obtained from a MMI fiber laser utilizing a single-mode fiber inscribed with a polarization-maintaining fiber Bragg grating. Moreover, high power MMI fiber lasers and amplifiers utilizing rare-earth doped silica large-core multimode fibers have been proposed and their critical features, such as efficiency, optical spectrum, and beam quality, have been investigated. On the other hand, because exclusively excited LP₀, n modes inside the multimode fiber segment are represented by apertured Bessel fields that have long propagation invariant distances, nondiffracting beams can be generated from the MMI-based fiber devices. In this thesis, the principle of generating nondiffracting beams from multimode optical fibers has been described and the propagation characteristics of the generated beams have been investigated. Active MMI fiber devices to generate tens of watts or even hundreds of watts nondiffracting beams have also been proposed.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectfiber lasers and amplifiersen_US
dc.subjectmultimode interferenceen_US
dc.subjectnondiffracting beamsen_US
dc.subjectself-imagingen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorPeyghambarian, Nasseren_US
dc.contributor.chairPeyghambarian, Nasseren_US
dc.contributor.committeememberSchulzgen, Axelen_US
dc.contributor.committeememberKueppers, Frankoen_US
dc.identifier.proquest10072en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.