Advanced Technologies for Fabrication and Testing of Large Flat Mirrors

Persistent Link:
http://hdl.handle.net/10150/195245
Title:
Advanced Technologies for Fabrication and Testing of Large Flat Mirrors
Author:
Yellowhair, Julius Eldon
Issue Date:
2007
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Classical fabrication methods alone do not enable manufacturing of large flat mirrors that are much larger than 1 meter. This dissertation presents the development of enabling technologies for manufacturing large high performance flat mirrors and lays the foundation for manufacturing very large flat mirrors. The enabling fabrication and testing methods were developed during the manufacture of a 1.6 meter flat. The key advantage over classical methods is that our method is scalable to larger flat mirrors up to 8 m in diameter.Large tools were used during surface grinding and coarse polishing of the 1.6 m flat. During this stage, electronic levels provided efficient measurements on global surface changes in the mirror. The electronic levels measure surface inclination or slope very accurately. They measured slope changes across the mirror surface. From the slope information, we can obtain surface information. Over 2 m, the electronic levels can measure to 50 nm rms of low order aberrations that include power and astigmatism. The use of electronic levels for flatness measurements is analyzed in detail.Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 cm in diameter). A radial stroker was developed and used to drive the smaller tools; the radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute). Polishing software, initially developed for stressed laps, enabled computer controlled polishing and was used to generate simulated removal profiles by optimizing tool stroke and dwell to reduce the high zones on the mirror surface. The resulting simulations from the polishing software were then applied to the real mirror. The scanning pentaprism and the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient surface testing to guide the remaining fabrication. The scanning pentaprism, another slope test, measured power to 9 nm rms over 2 meters. The Fizeau interferometer measured 1 meter subapertures and measured the 1.6 meter flat to 3 nm rms; the 1 meter reference flat was also calibrated to 3 nm rms. Both test systems are analyzed in detail. During surface figuring, the fabrication and testing were operated in a closed loop. The closed loop operation resulted in a rapid convergence of the mirror surface (11 nm rms power, and 6 nm rms surface irregularity). At present, the surface figure for the finished 1.6 m flat is state of the art for 2 meter class flat mirrors.
Type:
text; Electronic Dissertation
Keywords:
accurate metrology; computer controlled polishing; flats
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Burge, James H.
Committee Chair:
Burge, James H.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleAdvanced Technologies for Fabrication and Testing of Large Flat Mirrorsen_US
dc.creatorYellowhair, Julius Eldonen_US
dc.contributor.authorYellowhair, Julius Eldonen_US
dc.date.issued2007en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractClassical fabrication methods alone do not enable manufacturing of large flat mirrors that are much larger than 1 meter. This dissertation presents the development of enabling technologies for manufacturing large high performance flat mirrors and lays the foundation for manufacturing very large flat mirrors. The enabling fabrication and testing methods were developed during the manufacture of a 1.6 meter flat. The key advantage over classical methods is that our method is scalable to larger flat mirrors up to 8 m in diameter.Large tools were used during surface grinding and coarse polishing of the 1.6 m flat. During this stage, electronic levels provided efficient measurements on global surface changes in the mirror. The electronic levels measure surface inclination or slope very accurately. They measured slope changes across the mirror surface. From the slope information, we can obtain surface information. Over 2 m, the electronic levels can measure to 50 nm rms of low order aberrations that include power and astigmatism. The use of electronic levels for flatness measurements is analyzed in detail.Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 cm in diameter). A radial stroker was developed and used to drive the smaller tools; the radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute). Polishing software, initially developed for stressed laps, enabled computer controlled polishing and was used to generate simulated removal profiles by optimizing tool stroke and dwell to reduce the high zones on the mirror surface. The resulting simulations from the polishing software were then applied to the real mirror. The scanning pentaprism and the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient surface testing to guide the remaining fabrication. The scanning pentaprism, another slope test, measured power to 9 nm rms over 2 meters. The Fizeau interferometer measured 1 meter subapertures and measured the 1.6 meter flat to 3 nm rms; the 1 meter reference flat was also calibrated to 3 nm rms. Both test systems are analyzed in detail. During surface figuring, the fabrication and testing were operated in a closed loop. The closed loop operation resulted in a rapid convergence of the mirror surface (11 nm rms power, and 6 nm rms surface irregularity). At present, the surface figure for the finished 1.6 m flat is state of the art for 2 meter class flat mirrors.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectaccurate metrologyen_US
dc.subjectcomputer controlled polishingen_US
dc.subjectflatsen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorBurge, James H.en_US
dc.contributor.chairBurge, James H.en_US
dc.contributor.committeememberSasian, Joseen_US
dc.contributor.committeememberWyant, Jamesen_US
dc.identifier.proquest2130en_US
dc.identifier.oclc659747239en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.