Electromagnetic Crystal based Terahertz Thermal Radiators and Components

Persistent Link:
http://hdl.handle.net/10150/195207
Title:
Electromagnetic Crystal based Terahertz Thermal Radiators and Components
Author:
Wu, Ziran
Issue Date:
2010
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
This dissertation presents the investigation of thermal radiation from three-dimensional electromagnetic crystals (EMXT), as well as the development of a THz rapid prototyping fabrication technique and its application in THz EMXT components and micro-system fabrication and integration. First, it is proposed that thermal radiation from a 3-D EMXT would be greatly enhanced at the band gap edge frequency due to the redistribution of photon density of states (DOS) within the crystal. A THz thermal radiator could thus be built upon a THz EMXT by utilizing the exceptional emission peak(s) around its band gap frequency. The thermal radiation enhancement effects of various THz EMXT including both silicon and tungsten woodpile structures (WPS) and cubic photonic cavity (CPC) array are explored. The DOS of all three structures are calculated, and their thermal radiation intensities are predicted using Planck's Equation. These calculations show that the DOS of the silicon and tungsten WPS can be enhanced by a factor of 11.8 around 364 GHz and 2.6 around 406 GHz respectively, in comparison to the normal blackbody radiation at same frequencies. An enhancement factor of more than 100 is obtained in calculation from the CPC array. A silicon WPS with a band gap around 200 GHz has been designed and fabricated. Thermal emissivity of the silicon WPS sample is measured with a control blackbody as reference. And enhancements of the emission from the WPS over the control blackbody are observed at several frequencies quite consistent with the theoretical predictions. Second, the practical challenge of THz EMXT component and system fabrication is met by a THz rapid prototyping technique developed by us. Using this technique, the fabrications of several EMXTs with 3D electromagnetic band gaps in the 100-400 GHz range are demonstrated. Characterization of the samples via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of this prototyping approach. Third, an all-dielectric THz waveguide is designed, fabricated and characterized. The design is based on hollow-core EMXT waveguide, and the fabrication is implemented with the THz prototyping method. Characterization results of the waveguide power loss factor show good consistency with the simulation, and waveguide propagation loss as low as 0.03 dB/mm at 105 GHz is demonstrated. Several design parameters are also varied and their impacts on the waveguide performance investigated theoretically. Finally, a THz EMXT antenna based on expanding the defect radius of the EMXT waveguide to a horn shape is proposed and studied. The boresight directivity and main beam angular width of the optimized EMXT horn antenna is comparable with a copper horn antenna of the same dimensions at low frequencies, and much better than the copper horn at high frequencies. The EMXT antenna has been successfully fabricated via the same THz prototyping, and we believe this is the first time an EMXT antenna of this architecture is fabricated. Far-field measurement of the EMXT antenna radiation pattern is undergoing. Also, in order to integrate planar THz solid-state devices (especially source and detector) and THz samples under test with the potential THz micro-system fabricate-able by the prototyping approach, an EMXT waveguide-to-microstrip line transition structure is designed. The structure uses tapered solid dielectric waveguides on both ends to transit THz energy from the EMXT waveguide defect onto the microstrip line. Simulation of the transition structure in a back-to-back configuration yields about -15 dB insertion loss mainly due to the dielectric material loss. The coupling and radiation loss of the transition structure is estimated to be -2.115 dB. The fabrication and characterization of the transition system is currently underway. With all the above THz components realized in the future, integrated THz micro-systems manufactured by the same prototyping technique will be achieved, with low cost, high quality, self-sufficiency, and great customizability.
Type:
text; Electronic Dissertation
Keywords:
blackbody; electromagnetic crystal; integrated system; rapid prototyping; terahertz
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Physics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Xin, Hao
Committee Chair:
Xin, Hao

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleElectromagnetic Crystal based Terahertz Thermal Radiators and Componentsen_US
dc.creatorWu, Ziranen_US
dc.contributor.authorWu, Ziranen_US
dc.date.issued2010en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThis dissertation presents the investigation of thermal radiation from three-dimensional electromagnetic crystals (EMXT), as well as the development of a THz rapid prototyping fabrication technique and its application in THz EMXT components and micro-system fabrication and integration. First, it is proposed that thermal radiation from a 3-D EMXT would be greatly enhanced at the band gap edge frequency due to the redistribution of photon density of states (DOS) within the crystal. A THz thermal radiator could thus be built upon a THz EMXT by utilizing the exceptional emission peak(s) around its band gap frequency. The thermal radiation enhancement effects of various THz EMXT including both silicon and tungsten woodpile structures (WPS) and cubic photonic cavity (CPC) array are explored. The DOS of all three structures are calculated, and their thermal radiation intensities are predicted using Planck's Equation. These calculations show that the DOS of the silicon and tungsten WPS can be enhanced by a factor of 11.8 around 364 GHz and 2.6 around 406 GHz respectively, in comparison to the normal blackbody radiation at same frequencies. An enhancement factor of more than 100 is obtained in calculation from the CPC array. A silicon WPS with a band gap around 200 GHz has been designed and fabricated. Thermal emissivity of the silicon WPS sample is measured with a control blackbody as reference. And enhancements of the emission from the WPS over the control blackbody are observed at several frequencies quite consistent with the theoretical predictions. Second, the practical challenge of THz EMXT component and system fabrication is met by a THz rapid prototyping technique developed by us. Using this technique, the fabrications of several EMXTs with 3D electromagnetic band gaps in the 100-400 GHz range are demonstrated. Characterization of the samples via THz Time-domain Spectroscopy (THz-TDS) shows very good agreement with simulation, confirming the build accuracy of this prototyping approach. Third, an all-dielectric THz waveguide is designed, fabricated and characterized. The design is based on hollow-core EMXT waveguide, and the fabrication is implemented with the THz prototyping method. Characterization results of the waveguide power loss factor show good consistency with the simulation, and waveguide propagation loss as low as 0.03 dB/mm at 105 GHz is demonstrated. Several design parameters are also varied and their impacts on the waveguide performance investigated theoretically. Finally, a THz EMXT antenna based on expanding the defect radius of the EMXT waveguide to a horn shape is proposed and studied. The boresight directivity and main beam angular width of the optimized EMXT horn antenna is comparable with a copper horn antenna of the same dimensions at low frequencies, and much better than the copper horn at high frequencies. The EMXT antenna has been successfully fabricated via the same THz prototyping, and we believe this is the first time an EMXT antenna of this architecture is fabricated. Far-field measurement of the EMXT antenna radiation pattern is undergoing. Also, in order to integrate planar THz solid-state devices (especially source and detector) and THz samples under test with the potential THz micro-system fabricate-able by the prototyping approach, an EMXT waveguide-to-microstrip line transition structure is designed. The structure uses tapered solid dielectric waveguides on both ends to transit THz energy from the EMXT waveguide defect onto the microstrip line. Simulation of the transition structure in a back-to-back configuration yields about -15 dB insertion loss mainly due to the dielectric material loss. The coupling and radiation loss of the transition structure is estimated to be -2.115 dB. The fabrication and characterization of the transition system is currently underway. With all the above THz components realized in the future, integrated THz micro-systems manufactured by the same prototyping technique will be achieved, with low cost, high quality, self-sufficiency, and great customizability.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectblackbodyen_US
dc.subjectelectromagnetic crystalen_US
dc.subjectintegrated systemen_US
dc.subjectrapid prototypingen_US
dc.subjectterahertzen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorXin, Haoen_US
dc.contributor.chairXin, Haoen_US
dc.contributor.committeememberXin, Haoen_US
dc.contributor.committeememberFang, Li-Zhien_US
dc.contributor.committeememberShupe, Michaelen_US
dc.contributor.committeememberZiolkowski, Richarden_US
dc.contributor.committeememberBickel, Williamen_US
dc.identifier.proquest11114en_US
dc.identifier.oclc752260974en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.