Mechanisms Underlying the Pharmacologic Reversal of Genetic and Epigenetic Components of Tumor Suppressor Gene Silencing in Human Breast Cancer

Persistent Link:
http://hdl.handle.net/10150/195193
Title:
Mechanisms Underlying the Pharmacologic Reversal of Genetic and Epigenetic Components of Tumor Suppressor Gene Silencing in Human Breast Cancer
Author:
Wozniak, Ryan Joseph
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In women, tumors of the breast remain the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths. One of the hallmarks of carcinogenesis is the abnormal silencing of tumor supprsssor genes by both genetic and epigenetic alterations, leading to defects in cell-cycle control, DNA repair, apoptosis and cell adhesion. This dissertation focuses on the elucidation of the genetic and epigenetic mechanisms associated with tumor suppressor gene silencing in human epithelial breast tumor cells, and the development of pharmacologic strategies aimed at reversing these types of repression through gene therapy and chromatin remodeling. Desmocollin 3 (DSC3) and MASPIN are anti-metastatic tumor suppressor genes that are silenced in a large percentage of breast tumors via aberrant DNA hypermethylation and histone hypoacetylation of their promoters. DSC3 and MASPIN are also p53-target genes, requiring its transcriptional activation to promote normal expression levels, yet a significant fraction of breast tumor cell lines express mutant forms of p53. Adenoviral-mediated re-introduction of wild type (wt) p53 into mutant p53-expressing breast tumor cells resulted in significant up-regulation of DSC3 and MASPIN expression, although not to the levels seen in normal breast epithelial cells. Mechanistically, the addition of wt p53 to these tumor cells resulted in increased histone acetylation and enhanced chromatin accessibility of the DSC3 and MASPIN promoters, despite continued cytosine hypermethylation. Pre-treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) prior to wt p53 addition produced synergistic reactivation of both DSC3 and MASPIN in breast cancer cells, approaching their levels in normal mammary cells. However, 5-aza-CdR did not significantly reduce DNA methylation in many cases as originally theorized. Therefore, follow-up studies focused on the identification of alternative, novel mechanisms of 5-aza-CdR-mediated induction of epigenetically silenced genes, finding that it consistently reduced transcriptionally repressive histone H3 lysine 9 (K9) methylation levels in the promoter regions of both DSC3 and MASPIN in breast tumor cells, by mediating global decreases in the histone H3 K9 methyltransferase, G9A. In summary, these results clearly show that cancer treatments targeting both genetic and epigenetic facets of gene regulation may be a useful strategy towards the therapeutic transcriptional reprogramming of cancer cells.
Type:
text; Electronic Dissertation
Keywords:
Pharmacology; Cancer; Genetics; Epigenetics
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Pharmacology & Toxicology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Futscher, Bernard W.
Committee Chair:
Futscher, Bernard W.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMechanisms Underlying the Pharmacologic Reversal of Genetic and Epigenetic Components of Tumor Suppressor Gene Silencing in Human Breast Canceren_US
dc.creatorWozniak, Ryan Josephen_US
dc.contributor.authorWozniak, Ryan Josephen_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn women, tumors of the breast remain the most frequently diagnosed malignancy and the second leading cause of cancer-related deaths. One of the hallmarks of carcinogenesis is the abnormal silencing of tumor supprsssor genes by both genetic and epigenetic alterations, leading to defects in cell-cycle control, DNA repair, apoptosis and cell adhesion. This dissertation focuses on the elucidation of the genetic and epigenetic mechanisms associated with tumor suppressor gene silencing in human epithelial breast tumor cells, and the development of pharmacologic strategies aimed at reversing these types of repression through gene therapy and chromatin remodeling. Desmocollin 3 (DSC3) and MASPIN are anti-metastatic tumor suppressor genes that are silenced in a large percentage of breast tumors via aberrant DNA hypermethylation and histone hypoacetylation of their promoters. DSC3 and MASPIN are also p53-target genes, requiring its transcriptional activation to promote normal expression levels, yet a significant fraction of breast tumor cell lines express mutant forms of p53. Adenoviral-mediated re-introduction of wild type (wt) p53 into mutant p53-expressing breast tumor cells resulted in significant up-regulation of DSC3 and MASPIN expression, although not to the levels seen in normal breast epithelial cells. Mechanistically, the addition of wt p53 to these tumor cells resulted in increased histone acetylation and enhanced chromatin accessibility of the DSC3 and MASPIN promoters, despite continued cytosine hypermethylation. Pre-treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) prior to wt p53 addition produced synergistic reactivation of both DSC3 and MASPIN in breast cancer cells, approaching their levels in normal mammary cells. However, 5-aza-CdR did not significantly reduce DNA methylation in many cases as originally theorized. Therefore, follow-up studies focused on the identification of alternative, novel mechanisms of 5-aza-CdR-mediated induction of epigenetically silenced genes, finding that it consistently reduced transcriptionally repressive histone H3 lysine 9 (K9) methylation levels in the promoter regions of both DSC3 and MASPIN in breast tumor cells, by mediating global decreases in the histone H3 K9 methyltransferase, G9A. In summary, these results clearly show that cancer treatments targeting both genetic and epigenetic facets of gene regulation may be a useful strategy towards the therapeutic transcriptional reprogramming of cancer cells.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectPharmacologyen_US
dc.subjectCanceren_US
dc.subjectGeneticsen_US
dc.subjectEpigeneticsen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePharmacology & Toxicologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorFutscher, Bernard W.en_US
dc.contributor.chairFutscher, Bernard W.en_US
dc.contributor.committeememberFutscher, Bernard W.en_US
dc.contributor.committeememberBloom, John W.en_US
dc.contributor.committeememberCress, Anne E.en_US
dc.contributor.committeememberMartinez, Jesse D.en_US
dc.contributor.committeememberCamenisch, Todd D.en_US
dc.identifier.proquest1660en_US
dc.identifier.oclc137356649en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.