Mechanistic Study of Nucleocytoplasmic Trafficking and Reversible Acetylation in Modulating the NRF2-Dependent Antioxidant Response

Persistent Link:
http://hdl.handle.net/10150/194904
Title:
Mechanistic Study of Nucleocytoplasmic Trafficking and Reversible Acetylation in Modulating the NRF2-Dependent Antioxidant Response
Author:
Sun, Zheng
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
To maintain intracellular redox homeostasis, genes encoding many endogenous antioxidants and phase II detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis- antioxidant responsive elements (AREs) in their promoter regions. Nrf2 has emerged as the pivatol transcription factor responsible for ARE-dependent transcription, and has been shown to play critical roles in hepatotoxicity, chemical carcinogenesis, pulmonary inflammatory diseases, neurodegenerative diseases and aging. Therefore, understanding the molecular mechanism of the Nrf2-dependent cytoprotective system is important for development of drugs for therapeutic intervention.Nrf2 is targeted by Keap1 for ubiquitin-mediated degradation under basal conditions. Upon oxidative stress, distinct cysteine residues of Keap1 are alkylated, leading to inhibition of Keap1 and activation of Nrf2. However, it was not clear how Nrf2 is re-entered into the repression status when redox homeostasis is re-achieved. In this dissertation, we establish that the post-induction repression of Nrf2 is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination/ degradation machinery. We show that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2 signaling; ubiquitination of Nrf2 is carried out in the cytosol; Keap1 nuclear translocation is independent of Nrf2; and the Nrf2-Keap1 complex does not bind the ARE. Collectively, these results suggest that Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE and mediates nuclear export of Nrf2 followed by ubiquitination and degradation of Nrf2 in the cytoplasm.In addition to Keap1-mediated negative regulation, we identified a novel positive regulatory mechanism of Nrf2 mediated by transcription co-activator p300/CBP. We show that p300/CBP directly binds and acetylates Nrf2 in response to oxidative stress. We have identified multiple acetylated lysine residues within the Nrf2 Neh1 DNA-binding domain. Combined lysine-to-arginine mutations on the acetylation sites, with no effects on Nrf2 protein stability, compromised the DNA-binding activity of Nrf2 in a promoter-specific manner both in vitro and in vivo. These findings demonstrated that acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 and established acetylation as a novel regulatory mechanism that functions in concert with Keap1-mediated ubiquitination in modulating the Nrf2-dependent antioxidant response.
Type:
text; Electronic Dissertation
Keywords:
acetylation; antioxidant response element; Keap1; Nrf2; oxidative stress; p300/CBP
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Pharmacology & Toxicology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Zhang, Donna D.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMechanistic Study of Nucleocytoplasmic Trafficking and Reversible Acetylation in Modulating the NRF2-Dependent Antioxidant Responseen_US
dc.creatorSun, Zhengen_US
dc.contributor.authorSun, Zhengen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractTo maintain intracellular redox homeostasis, genes encoding many endogenous antioxidants and phase II detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis- antioxidant responsive elements (AREs) in their promoter regions. Nrf2 has emerged as the pivatol transcription factor responsible for ARE-dependent transcription, and has been shown to play critical roles in hepatotoxicity, chemical carcinogenesis, pulmonary inflammatory diseases, neurodegenerative diseases and aging. Therefore, understanding the molecular mechanism of the Nrf2-dependent cytoprotective system is important for development of drugs for therapeutic intervention.Nrf2 is targeted by Keap1 for ubiquitin-mediated degradation under basal conditions. Upon oxidative stress, distinct cysteine residues of Keap1 are alkylated, leading to inhibition of Keap1 and activation of Nrf2. However, it was not clear how Nrf2 is re-entered into the repression status when redox homeostasis is re-achieved. In this dissertation, we establish that the post-induction repression of Nrf2 is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination/ degradation machinery. We show that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2 signaling; ubiquitination of Nrf2 is carried out in the cytosol; Keap1 nuclear translocation is independent of Nrf2; and the Nrf2-Keap1 complex does not bind the ARE. Collectively, these results suggest that Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE and mediates nuclear export of Nrf2 followed by ubiquitination and degradation of Nrf2 in the cytoplasm.In addition to Keap1-mediated negative regulation, we identified a novel positive regulatory mechanism of Nrf2 mediated by transcription co-activator p300/CBP. We show that p300/CBP directly binds and acetylates Nrf2 in response to oxidative stress. We have identified multiple acetylated lysine residues within the Nrf2 Neh1 DNA-binding domain. Combined lysine-to-arginine mutations on the acetylation sites, with no effects on Nrf2 protein stability, compromised the DNA-binding activity of Nrf2 in a promoter-specific manner both in vitro and in vivo. These findings demonstrated that acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 and established acetylation as a novel regulatory mechanism that functions in concert with Keap1-mediated ubiquitination in modulating the Nrf2-dependent antioxidant response.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectacetylationen_US
dc.subjectantioxidant response elementen_US
dc.subjectKeap1en_US
dc.subjectNrf2en_US
dc.subjectoxidative stressen_US
dc.subjectp300/CBPen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePharmacology & Toxicologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorZhang, Donna D.en_US
dc.contributor.committeememberMonks, Terrence J.en_US
dc.contributor.committeememberWondrak, Georg T.en_US
dc.contributor.committeememberHarris, David T.en_US
dc.contributor.committeememberLybarger, Lonnie P.en_US
dc.identifier.proquest10116en_US
dc.identifier.oclc659750656en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.