Persistent Link:
http://hdl.handle.net/10150/194831
Title:
Synthetic Peptide Ligand Mimetics and Tumor Cell Motility
Author:
Sroka, Thomas Charles
Issue Date:
2005
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Human tumor cell progression and metastasis is partially dependent on the ability of tumor cells to adhere to the proteins of the extracellular matrix and migrate to distant locations. Using a combinatorial screening approach, six novel D-amino acid containing peptides were identified and analyzed for their ability to adhere to human prostate tumor cells, support tumor cell adhesion and inhibit tumor cell adhesion to ECM proteins. Two peptides, RZ-3 (kmviywkag) and HYD1 (kikmviswkg) bound to tumor cell surfaces. A scrambled peptide derivative of HYD1, HYDS (wiksmkivkg) is not active. As immobilized ligands, RZ-3 and HYD1 can support prostate tumor cell adhesion. Prostate tumor cell adhesion to immobilized RZ-3 and HYD1 is integrin dependent. Soluble RZ-3 and HYD1 inhibits tumor cell adhesion to extracellular matrix proteins in a concentration dependent manner. These results indicate that RZ-3 and HYD1 are biologically active D-amino acid containing peptides that can support tumor cell adhesion and can inhibit tumor cell adhesion to immobilized extracellular matrix proteins.Cell migration is dependent on adhesive interactions with the extracelluar matrix. These interactions induce signaling and cytoskeletal responses necessary for migration. HYD1 completely blocks random haptotactic migration and inhibits invasion of prostate carcinoma cells on laminin-5. This effect is adhesion independent and reversible. The inhibition of migration by HYD1 involves a dramatic remodeling of the actin cytoskeleton resulting in increased stress fiber formation and actin colocalization with cortactin at the cell membrane. HYD1 interacts with a6 and a3 integrin subunits and elevates laminin-5 dependent intracellular signals including focal adhesion kinase, mitogen activated protein kinase kinase, and extracellular signal-regulated kinase. The scrambled derivative of HYD1, HYDS, does not interact with the a6 or a3 integrin subunits and is not biologically active. The minimal element for bioactivity of HYD1 was determined using alanine-substituted analogs of HYD1 and N- and C-terminal deletion mutants of HYD1. The minimal element necessary to block cell migration on laminin-5 and activate cell signaling through ERK is xikmviswxx. Taken together, these results indicate that HYD1 is a biologically active integrin-targeting peptide that reversibly inhibits tumor cell migration on laminin-5 and uncouples phosphotyrosine signaling from cytoskeletal dependent migration.
Type:
text; Electronic Dissertation
Keywords:
integrin; peptide; ligand; tumor cell; migration; adhesion
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Cancer Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Cress, Anne E
Committee Chair:
Cress, Anne E

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleSynthetic Peptide Ligand Mimetics and Tumor Cell Motilityen_US
dc.creatorSroka, Thomas Charlesen_US
dc.contributor.authorSroka, Thomas Charlesen_US
dc.date.issued2005en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractHuman tumor cell progression and metastasis is partially dependent on the ability of tumor cells to adhere to the proteins of the extracellular matrix and migrate to distant locations. Using a combinatorial screening approach, six novel D-amino acid containing peptides were identified and analyzed for their ability to adhere to human prostate tumor cells, support tumor cell adhesion and inhibit tumor cell adhesion to ECM proteins. Two peptides, RZ-3 (kmviywkag) and HYD1 (kikmviswkg) bound to tumor cell surfaces. A scrambled peptide derivative of HYD1, HYDS (wiksmkivkg) is not active. As immobilized ligands, RZ-3 and HYD1 can support prostate tumor cell adhesion. Prostate tumor cell adhesion to immobilized RZ-3 and HYD1 is integrin dependent. Soluble RZ-3 and HYD1 inhibits tumor cell adhesion to extracellular matrix proteins in a concentration dependent manner. These results indicate that RZ-3 and HYD1 are biologically active D-amino acid containing peptides that can support tumor cell adhesion and can inhibit tumor cell adhesion to immobilized extracellular matrix proteins.Cell migration is dependent on adhesive interactions with the extracelluar matrix. These interactions induce signaling and cytoskeletal responses necessary for migration. HYD1 completely blocks random haptotactic migration and inhibits invasion of prostate carcinoma cells on laminin-5. This effect is adhesion independent and reversible. The inhibition of migration by HYD1 involves a dramatic remodeling of the actin cytoskeleton resulting in increased stress fiber formation and actin colocalization with cortactin at the cell membrane. HYD1 interacts with a6 and a3 integrin subunits and elevates laminin-5 dependent intracellular signals including focal adhesion kinase, mitogen activated protein kinase kinase, and extracellular signal-regulated kinase. The scrambled derivative of HYD1, HYDS, does not interact with the a6 or a3 integrin subunits and is not biologically active. The minimal element for bioactivity of HYD1 was determined using alanine-substituted analogs of HYD1 and N- and C-terminal deletion mutants of HYD1. The minimal element necessary to block cell migration on laminin-5 and activate cell signaling through ERK is xikmviswxx. Taken together, these results indicate that HYD1 is a biologically active integrin-targeting peptide that reversibly inhibits tumor cell migration on laminin-5 and uncouples phosphotyrosine signaling from cytoskeletal dependent migration.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectintegrinen_US
dc.subjectpeptideen_US
dc.subjectliganden_US
dc.subjecttumor cellen_US
dc.subjectmigrationen_US
dc.subjectadhesionen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineCancer Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCress, Anne Een_US
dc.contributor.chairCress, Anne Een_US
dc.contributor.committeememberMiesfeld, Roger L.en_US
dc.contributor.committeememberKlewer, Scott E.en_US
dc.identifier.proquest1325en_US
dc.identifier.oclc137355030en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.