PDI-PIXE-MS: Particle Desorption Ionization Particle-Induced X-Ray Emission Mass Spectrometry

Persistent Link:
http://hdl.handle.net/10150/194827
Title:
PDI-PIXE-MS: Particle Desorption Ionization Particle-Induced X-Ray Emission Mass Spectrometry
Author:
Sproch, Norman K.
Issue Date:
2007
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Incident ions, from a Van de Graaff accelerator, in the MeV energy range, deposit their energy into the near surface of a sample. This, in turn, causes atomic, molecular, cluster and fragment ion species to be desorbed and ionized, while simultaneously emitting characteristic elemental X-rays. The multielemental X-rays provide qualitative elemental information, which may be deconvoluted and fit to a theoretical X-ray spectrum, generated by a quantitative analysis program, GUPIX, while the atomic, molecular, cluster, and fragment ion species are identified using a quadrupole mass spectrometer. This methodology directly links elemental determinations with chemical speciation.The development of this particle desorption ionization particle induced X-ray emission mass spectrometer, the PDI-PIXE-MS (or PIXE-MS) instrument, which has the ability to collect both qualitative multielemental X-rays and mass spectral data is described. This multiplexed instrument has been designed to use millimeter-sized MeV particle beams as a desorption ionization (PDI) and X-ray emission (PIXE) source. Two general methods have been employed, one simultaneous and the other sequential. Both methods make use of a novel X-ray/ion source developed for use with the quadrupole mass spectrometer used in these experiments. The first method uses a MeV heavy ion particle beam, typically oxygen, to desorb and ionize the sample, while simultaneously producing characteristic multielemental X-rays. The resulting molecular, cluster, and fragment ions are collected by the mass spectrometer, and the X-rays are collected using a Si-PIN photodiode detector in conjunction with a multichannel analyzer (MCA). Heavy ions of N+, O+, O+2, Ar+, and Kr+ have been investigated, although heavy ion X-ray and mass spectra have focused on the use of oxygen particle beams. The second method is performed by first collecting the X-ray data with a MeV ion beam of He+ ions, then desorbing and ionizing the sample species with a MeV particle beam of heavy ions, producing good ion yields, for mass spectral data collection. The potential development of a scanning microprobe instrument, that would provide micron-scale, imaged, multielemental, and molecular and fragment ion chemical information is being investigated through the development of this prototype PIXE-MS instrument.
Type:
text; Electronic Dissertation
Keywords:
mass spectrometry; plasma desorption mass spectrometry; particle-induced X-ray emission spectroscopy; accelerator; PIXE; PDMS
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Chemistry; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Corrales, L. Rene
Committee Chair:
Corrales, L. Rene

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titlePDI-PIXE-MS: Particle Desorption Ionization Particle-Induced X-Ray Emission Mass Spectrometryen_US
dc.creatorSproch, Norman K.en_US
dc.contributor.authorSproch, Norman K.en_US
dc.date.issued2007en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIncident ions, from a Van de Graaff accelerator, in the MeV energy range, deposit their energy into the near surface of a sample. This, in turn, causes atomic, molecular, cluster and fragment ion species to be desorbed and ionized, while simultaneously emitting characteristic elemental X-rays. The multielemental X-rays provide qualitative elemental information, which may be deconvoluted and fit to a theoretical X-ray spectrum, generated by a quantitative analysis program, GUPIX, while the atomic, molecular, cluster, and fragment ion species are identified using a quadrupole mass spectrometer. This methodology directly links elemental determinations with chemical speciation.The development of this particle desorption ionization particle induced X-ray emission mass spectrometer, the PDI-PIXE-MS (or PIXE-MS) instrument, which has the ability to collect both qualitative multielemental X-rays and mass spectral data is described. This multiplexed instrument has been designed to use millimeter-sized MeV particle beams as a desorption ionization (PDI) and X-ray emission (PIXE) source. Two general methods have been employed, one simultaneous and the other sequential. Both methods make use of a novel X-ray/ion source developed for use with the quadrupole mass spectrometer used in these experiments. The first method uses a MeV heavy ion particle beam, typically oxygen, to desorb and ionize the sample, while simultaneously producing characteristic multielemental X-rays. The resulting molecular, cluster, and fragment ions are collected by the mass spectrometer, and the X-rays are collected using a Si-PIN photodiode detector in conjunction with a multichannel analyzer (MCA). Heavy ions of N+, O+, O+2, Ar+, and Kr+ have been investigated, although heavy ion X-ray and mass spectra have focused on the use of oxygen particle beams. The second method is performed by first collecting the X-ray data with a MeV ion beam of He+ ions, then desorbing and ionizing the sample species with a MeV particle beam of heavy ions, producing good ion yields, for mass spectral data collection. The potential development of a scanning microprobe instrument, that would provide micron-scale, imaged, multielemental, and molecular and fragment ion chemical information is being investigated through the development of this prototype PIXE-MS instrument.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectmass spectrometryen_US
dc.subjectplasma desorption mass spectrometryen_US
dc.subjectparticle-induced X-ray emission spectroscopyen_US
dc.subjectacceleratoren_US
dc.subjectPIXEen_US
dc.subjectPDMSen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorCorrales, L. Reneen_US
dc.contributor.chairCorrales, L. Reneen_US
dc.contributor.committeememberEvans, Dennis H.en_US
dc.contributor.committeememberLoy, Douglas A.en_US
dc.contributor.committeememberJull, A. J. Timothyen_US
dc.identifier.proquest2367en_US
dc.identifier.oclc659748250en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.