Crop Phenology, Dry Matter Production, and Nutrient Uptake and Partitioning in Cantaloupe (Cucumis Melo L.) and Chile (Capsicum Annuum L.)

Persistent Link:
http://hdl.handle.net/10150/194813
Title:
Crop Phenology, Dry Matter Production, and Nutrient Uptake and Partitioning in Cantaloupe (Cucumis Melo L.) and Chile (Capsicum Annuum L.)
Author:
Soto-Ortiz, Roberto
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Currently, the information available concerning requirements for optimum crop growth and development, dry matter production, and nutrient uptake and partitioning for Cantaloupes and New Mexico chile type cultivars is limited. Such information is required to predict and identify critical stages of growth in order to develop efficient nutrient management programs for these crops. The goals of this dissertation are: 1) to obtain general irrigated cantaloupe and New Mexico chile plants development models as a function of heat units accumulated after planting (HUAP), and 2) to determine dry matter production and nutrient uptake and partitioning patterns of these crops as a function of HUAP. Four primary investigations are presented in this dissertation. In the first and second studies, plant development models for irrigated cantaloupe and New Mexico chile-type cultivars were obtained. For cantaloupe plants, early bloom occurred at 265 ± 47 HUAP, early fruit set at 381 ± 51 HUAP, early netting at 499 ± 63 HUAP, and physiological maturity at 746 ± 66 HUAP. For chile plants, first bloom occurred at 530 ± 141 HUAP, early bloom at 750 ± 170 HUAP, peak bloom at 1006 ± 145 HUAP, first green chile harvest at 1329 ± 120 HUAP, and red harvest stage at 1798 ± 58 HUAP. Also, these studies revealed that beyond the early netting stage (approximately 499 HUAP), cantaloupe fruits were the strongest sinks for dry matter accumulation. For chile plants, between the first green chile harvest and red chile harvest stages (approximately at 1550 HUAP), chile pods developed into stronger sinks for dry matter accumulation. The third and fourth investigations revealed that the period of maximum nutrient uptake coincides with that of maximum dry matter accumulation for both crops. The overall total nutrient uptake of N, P, K, Ca, Mg, S, B, Zn, Mn, Fe, and Cu for cantaloupe plants was 138, 21, 213, 132, 29, 28, 0.17, 0.20, 0.13, 2.0, and 0.06 kg ha⁻¹, for chile plants, the overall total nutrient was 216, 20, 292, 117, 56, 28, 0.31, 0.20, 0.31, 1.6 and 0.14 kg ha⁻¹ for these nutrients respectively.
Type:
text; Electronic Dissertation
Keywords:
dry matter production; nutrient uptake; cantaloupe; chile
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Soil, Water & Environmental Science; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Silvertooth, Jeffrey C.
Committee Chair:
Silvertooth, Jeffrey C.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleCrop Phenology, Dry Matter Production, and Nutrient Uptake and Partitioning in Cantaloupe (Cucumis Melo L.) and Chile (Capsicum Annuum L.)en_US
dc.creatorSoto-Ortiz, Robertoen_US
dc.contributor.authorSoto-Ortiz, Robertoen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractCurrently, the information available concerning requirements for optimum crop growth and development, dry matter production, and nutrient uptake and partitioning for Cantaloupes and New Mexico chile type cultivars is limited. Such information is required to predict and identify critical stages of growth in order to develop efficient nutrient management programs for these crops. The goals of this dissertation are: 1) to obtain general irrigated cantaloupe and New Mexico chile plants development models as a function of heat units accumulated after planting (HUAP), and 2) to determine dry matter production and nutrient uptake and partitioning patterns of these crops as a function of HUAP. Four primary investigations are presented in this dissertation. In the first and second studies, plant development models for irrigated cantaloupe and New Mexico chile-type cultivars were obtained. For cantaloupe plants, early bloom occurred at 265 ± 47 HUAP, early fruit set at 381 ± 51 HUAP, early netting at 499 ± 63 HUAP, and physiological maturity at 746 ± 66 HUAP. For chile plants, first bloom occurred at 530 ± 141 HUAP, early bloom at 750 ± 170 HUAP, peak bloom at 1006 ± 145 HUAP, first green chile harvest at 1329 ± 120 HUAP, and red harvest stage at 1798 ± 58 HUAP. Also, these studies revealed that beyond the early netting stage (approximately 499 HUAP), cantaloupe fruits were the strongest sinks for dry matter accumulation. For chile plants, between the first green chile harvest and red chile harvest stages (approximately at 1550 HUAP), chile pods developed into stronger sinks for dry matter accumulation. The third and fourth investigations revealed that the period of maximum nutrient uptake coincides with that of maximum dry matter accumulation for both crops. The overall total nutrient uptake of N, P, K, Ca, Mg, S, B, Zn, Mn, Fe, and Cu for cantaloupe plants was 138, 21, 213, 132, 29, 28, 0.17, 0.20, 0.13, 2.0, and 0.06 kg ha⁻¹, for chile plants, the overall total nutrient was 216, 20, 292, 117, 56, 28, 0.31, 0.20, 0.31, 1.6 and 0.14 kg ha⁻¹ for these nutrients respectively.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectdry matter productionen_US
dc.subjectnutrient uptakeen_US
dc.subjectcantaloupeen_US
dc.subjectchileen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineSoil, Water & Environmental Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorSilvertooth, Jeffrey C.en_US
dc.contributor.chairSilvertooth, Jeffrey C.en_US
dc.contributor.committeememberSilvertooth, Jeffrey C.en_US
dc.contributor.committeememberSanchez, Charles A.en_US
dc.contributor.committeememberWalworth, James L.en_US
dc.contributor.committeememberKubota, Chierien_US
dc.identifier.proquest2747en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.