Molecular and Morphological Characterization of Segmentation in Artemia franciscana

Persistent Link:
http://hdl.handle.net/10150/194771
Title:
Molecular and Morphological Characterization of Segmentation in Artemia franciscana
Author:
Blachuta, Beata J
Issue Date:
2009
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In the animal kingdom, only the annelids, arthropods and chordates are segmented. Whether the common bilateran ancestor to these three phyla was segmented, remains debated. One way to address the origins of the evolution of segmentation is to compare the molecular mechanisms underlying this complex process between the phyla and across each phylum. This thesis first examines what we already know about segmentation in each of the three phyla, and compares the models of segmentation in each phylum as well as between the three. Then, the role of γ-secretase mediated signaling in segmentation was examined in the branchiopod crustacean, Artemia franciscana. These findings were further compared to another crustacean Thamnocephalus platyurus. Both of these species develop their thoracic segments sequentially from anterior to posterior, and exposure to a γ-secretase inhibitor slows segmentation in a dose dependent manner, but does not affect the overall growth. My results suggest that Delta/Notch signaling is an essential for segment patterning in these two species, although it may not function as a molecular oscillator, as is the case in vertebrates. Similar findings in other arthropods suggest that the role of Notch in segmentation is not as unique to vertebrates as once thought. Finding such similarities in the molecular pathways that pattern segments across segmented phyla suggests that the Urbilaterian may have indeed been segmented.
Type:
text; Electronic Dissertation
Degree Name:
Ph.D.
Degree Level:
doctoral
Degree Program:
Molecular & Cellular Biology; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Nagy, Lisa M
Committee Chair:
Nagy, Lisa M

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleMolecular and Morphological Characterization of Segmentation in Artemia franciscanaen_US
dc.creatorBlachuta, Beata Jen_US
dc.contributor.authorBlachuta, Beata Jen_US
dc.date.issued2009en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn the animal kingdom, only the annelids, arthropods and chordates are segmented. Whether the common bilateran ancestor to these three phyla was segmented, remains debated. One way to address the origins of the evolution of segmentation is to compare the molecular mechanisms underlying this complex process between the phyla and across each phylum. This thesis first examines what we already know about segmentation in each of the three phyla, and compares the models of segmentation in each phylum as well as between the three. Then, the role of γ-secretase mediated signaling in segmentation was examined in the branchiopod crustacean, Artemia franciscana. These findings were further compared to another crustacean Thamnocephalus platyurus. Both of these species develop their thoracic segments sequentially from anterior to posterior, and exposure to a γ-secretase inhibitor slows segmentation in a dose dependent manner, but does not affect the overall growth. My results suggest that Delta/Notch signaling is an essential for segment patterning in these two species, although it may not function as a molecular oscillator, as is the case in vertebrates. Similar findings in other arthropods suggest that the role of Notch in segmentation is not as unique to vertebrates as once thought. Finding such similarities in the molecular pathways that pattern segments across segmented phyla suggests that the Urbilaterian may have indeed been segmented.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.namePh.D.en_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineMolecular & Cellular Biologyen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorNagy, Lisa Men_US
dc.contributor.chairNagy, Lisa Men_US
dc.contributor.committeememberBurd, Gailen_US
dc.contributor.committeememberWeinert, Teden_US
dc.identifier.proquest10429en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.