Persistent Link:
http://hdl.handle.net/10150/194744
Title:
Effects of Nonlinearity and Disorder in Communication Systems
Author:
Shkarayev, Maxim
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
In this dissertation we present theoretical and experimental investigation of the performance quality of fiber optical communication systems, and find new and inexpansive ways of increasing the rate of theinformation transmission.The first part of this work discuss the two major factors limiting the quality of information channels in the fiber optical communication systems. Using methods of large deviation theory from statisticalphysics, we carry out analytical and numerical study of error statistics in optical communication systems in the presence of the temporal noise from optical amplifiers and the structural disorder of optical fibers. In the slowly varying envelope approximation light propagation through optical fiber is described by Schr\{o}dinger's equation. Signal transmission is impeded by the additive (amplifiers) and multiplicative (birefringence) noise This results in signal distortion that may lead to erroneous interpretation of the signal. System performance is characterized by the probability of error occurrence. Fluctuation of spacial disorder due to changing external factors (temperature, vibrations, etc) leads to fluctuations of error rates. Commonly the distribution of error rates is assumed to be Gaussian. Using the optimal fluctuation method we show that this distribution is in fact lognormal. Sucha distribution has ""fat"" tails implying that the likelihood of system outages is much higher than itwould be in the Gaussian approximation. We present experimental results that provide excellent confirmation of our theoretical predictions.In the second part of this dissertation we present some published work on bisolitons in the dispersion managed systems. Modern communication systems use light pulses to transmit tremendous amounts of information. These systems can be modeled using variations of the Nonlinear Shrodinger Equation where chromatic dispersion and nonlinear effects in the glass fiber are taken into account. The best system performance to date is achieved using dispersion management. We will see how the dispersion management works and how it can be modeled. As you pack information more tightly the interaction between the pulsesbecomes increasingly important. In Fall 2005, experiments in Germany showed that bound pairs of pulses (bisolitons) could propagate significant distances. Through numerical investigation we found parametric bifurcation of bisolitonic solutions, and developed a new iterative method with polynomial correction for the calculation of these solutions. Using these solutions in the signal transmission could increase the transmission rates.
Type:
text; Electronic Dissertation
Keywords:
nonlinear Schroedinger; rare event statistics; dispersion management; solitary wave; bisoliton
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Gabitov, Ildar R.
Committee Chair:
Gabitov, Ildar R.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleEffects of Nonlinearity and Disorder in Communication Systemsen_US
dc.creatorShkarayev, Maximen_US
dc.contributor.authorShkarayev, Maximen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractIn this dissertation we present theoretical and experimental investigation of the performance quality of fiber optical communication systems, and find new and inexpansive ways of increasing the rate of theinformation transmission.The first part of this work discuss the two major factors limiting the quality of information channels in the fiber optical communication systems. Using methods of large deviation theory from statisticalphysics, we carry out analytical and numerical study of error statistics in optical communication systems in the presence of the temporal noise from optical amplifiers and the structural disorder of optical fibers. In the slowly varying envelope approximation light propagation through optical fiber is described by Schr\{o}dinger's equation. Signal transmission is impeded by the additive (amplifiers) and multiplicative (birefringence) noise This results in signal distortion that may lead to erroneous interpretation of the signal. System performance is characterized by the probability of error occurrence. Fluctuation of spacial disorder due to changing external factors (temperature, vibrations, etc) leads to fluctuations of error rates. Commonly the distribution of error rates is assumed to be Gaussian. Using the optimal fluctuation method we show that this distribution is in fact lognormal. Sucha distribution has ""fat"" tails implying that the likelihood of system outages is much higher than itwould be in the Gaussian approximation. We present experimental results that provide excellent confirmation of our theoretical predictions.In the second part of this dissertation we present some published work on bisolitons in the dispersion managed systems. Modern communication systems use light pulses to transmit tremendous amounts of information. These systems can be modeled using variations of the Nonlinear Shrodinger Equation where chromatic dispersion and nonlinear effects in the glass fiber are taken into account. The best system performance to date is achieved using dispersion management. We will see how the dispersion management works and how it can be modeled. As you pack information more tightly the interaction between the pulsesbecomes increasingly important. In Fall 2005, experiments in Germany showed that bound pairs of pulses (bisolitons) could propagate significant distances. Through numerical investigation we found parametric bifurcation of bisolitonic solutions, and developed a new iterative method with polynomial correction for the calculation of these solutions. Using these solutions in the signal transmission could increase the transmission rates.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectnonlinear Schroedingeren_US
dc.subjectrare event statisticsen_US
dc.subjectdispersion managementen_US
dc.subjectsolitary waveen_US
dc.subjectbisolitonen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorGabitov, Ildar R.en_US
dc.contributor.chairGabitov, Ildar R.en_US
dc.contributor.committeememberGabitov, Ildar R.en_US
dc.contributor.committeememberIndik, Roberten_US
dc.contributor.committeememberStepanov, Mishaen_US
dc.identifier.proquest2584en_US
dc.identifier.oclc659749591en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.