Persistent Link:
http://hdl.handle.net/10150/194698
Title:
Optical Metrology for Transmission Interferometric Testing
Author:
Seong, Kibyung
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
The degree of sophistication and customization available in optical components has been driven by advances in lens design and fabrication. The optical testing of these components remains a challenge. In particular, the precision measurement of the properties of transmissive optics such as transmitted wavefront, surface figure, and index of refraction continues to require new methodology tools.A method of surface figure measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. Given known values for the refractive index and center thickness, along with the sample's transmitted wavefront, the unknown surface profile is reconstructed in a deterministic way. The technique relies on knowledge of one of the surfaces of the element, such as an easy to measure plano or spherical surface, and is well-suited for testing aspheric surfaces. Additionally, this method has the advantage of making measurements on multiplexed surfaces, such as a lenslet array.Since the index of refraction of materials varies with wavelength, the test sample undergoes chromatic effects with wavelength. Chromatic aberration is an important concern whenever optics are designed for use in the visible spectrum. A method has been presented for obtaining the longitudinal chromatic aberration of a test part from the transmitted wavefronts at 5 different wavelengths. The longitudinal chromatic aberration measurements on a plano-convex lens and an achromat are presented.Injection molding is becoming a popular manufacturing method for optical plastic elements because of low cost and mass production. During injection molding, the plastic lenses undergo large pressure and temperature changes so that the resulting lens has a spatially-varying index. Since the index is assumed to be a single number in the design stage, except for index-gradient lenses, an inhomogeneous index of the sample can cause a decrease in optical performance. The surface reconstruction algorithm can be modified to find two dimensional index values over the test aperture. In this case, both surfaces are measured by an external interferometer and one unknown parameter is the index value.
Type:
text; Electronic Dissertation
Keywords:
Optical Sciences
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Optical Sciences; Graduate College
Degree Grantor:
University of Arizona
Committee Chair:
Greivenkamp, John E.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleOptical Metrology for Transmission Interferometric Testingen_US
dc.creatorSeong, Kibyungen_US
dc.contributor.authorSeong, Kibyungen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractThe degree of sophistication and customization available in optical components has been driven by advances in lens design and fabrication. The optical testing of these components remains a challenge. In particular, the precision measurement of the properties of transmissive optics such as transmitted wavefront, surface figure, and index of refraction continues to require new methodology tools.A method of surface figure measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. Given known values for the refractive index and center thickness, along with the sample's transmitted wavefront, the unknown surface profile is reconstructed in a deterministic way. The technique relies on knowledge of one of the surfaces of the element, such as an easy to measure plano or spherical surface, and is well-suited for testing aspheric surfaces. Additionally, this method has the advantage of making measurements on multiplexed surfaces, such as a lenslet array.Since the index of refraction of materials varies with wavelength, the test sample undergoes chromatic effects with wavelength. Chromatic aberration is an important concern whenever optics are designed for use in the visible spectrum. A method has been presented for obtaining the longitudinal chromatic aberration of a test part from the transmitted wavefronts at 5 different wavelengths. The longitudinal chromatic aberration measurements on a plano-convex lens and an achromat are presented.Injection molding is becoming a popular manufacturing method for optical plastic elements because of low cost and mass production. During injection molding, the plastic lenses undergo large pressure and temperature changes so that the resulting lens has a spatially-varying index. Since the index is assumed to be a single number in the design stage, except for index-gradient lenses, an inhomogeneous index of the sample can cause a decrease in optical performance. The surface reconstruction algorithm can be modified to find two dimensional index values over the test aperture. In this case, both surfaces are measured by an external interferometer and one unknown parameter is the index value.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectOptical Sciencesen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineOptical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.chairGreivenkamp, John E.en_US
dc.contributor.committeememberSchwiegerling, Jamesen_US
dc.contributor.committeememberWyant, Jamesen_US
dc.identifier.proquest2801en_US
dc.identifier.oclc659749854en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.