Persistent Link:
http://hdl.handle.net/10150/194672
Title:
Dynamics of Laminar Jets in Stratified Fluids
Author:
Schofield, Samuel Phillip
Issue Date:
2006
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
We consider the flow of a planar buoyant jet in a stable density stratified fluid. The jet undergoes acceleration then deceleration. The flow exhibits a pair of rotors adjacent to the nozzle and near the jet termination point. This recirculation maintains an entrained conduit of less dense water from near the nozzle that surrounds the denser jet core. The flow is found to have three different instability modes: a symmetric instability in the jet core, an antisymmetric instability in the jet core and a symmetric shear type instability on the edge of the entrained conduit. A local linear stability analysis shows the presence of the three modes with the symmetric and anti-symmetric modes in the jet core exhibiting comparable growth rates. However, the anti-symmetric is found to dominate. Direct numerical simulation of Bousinessq equations was used to map the stability of the flow as a function of jet Reynolds number and Grashof number. In addition, the flow is considered for two different stratification strengths and two different Schmidt numbers. The stratification length was not found to have a significant impact on flow stability. Higher Schmidt numbers led to decreased stability, primarily due to the increased acceleration of the more dense jet core. In addition, possible methods for accurate global stability analysis are presented.
Type:
text; Electronic Dissertation
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Applied Mathematics; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Restrepo, Juan M.
Committee Chair:
Restrepo, Juan M.

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleDynamics of Laminar Jets in Stratified Fluidsen_US
dc.creatorSchofield, Samuel Phillipen_US
dc.contributor.authorSchofield, Samuel Phillipen_US
dc.date.issued2006en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractWe consider the flow of a planar buoyant jet in a stable density stratified fluid. The jet undergoes acceleration then deceleration. The flow exhibits a pair of rotors adjacent to the nozzle and near the jet termination point. This recirculation maintains an entrained conduit of less dense water from near the nozzle that surrounds the denser jet core. The flow is found to have three different instability modes: a symmetric instability in the jet core, an antisymmetric instability in the jet core and a symmetric shear type instability on the edge of the entrained conduit. A local linear stability analysis shows the presence of the three modes with the symmetric and anti-symmetric modes in the jet core exhibiting comparable growth rates. However, the anti-symmetric is found to dominate. Direct numerical simulation of Bousinessq equations was used to map the stability of the flow as a function of jet Reynolds number and Grashof number. In addition, the flow is considered for two different stratification strengths and two different Schmidt numbers. The stratification length was not found to have a significant impact on flow stability. Higher Schmidt numbers led to decreased stability, primarily due to the increased acceleration of the more dense jet core. In addition, possible methods for accurate global stability analysis are presented.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplineApplied Mathematicsen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorRestrepo, Juan M.en_US
dc.contributor.chairRestrepo, Juan M.en_US
dc.contributor.committeememberGoldstein, Raymonden_US
dc.contributor.committeememberGlasner, Karlen_US
dc.identifier.proquest1474en_US
dc.identifier.oclc137356929en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.