Persistent Link:
http://hdl.handle.net/10150/194387
Title:
Targeting the Promoter Regions of PDGF Ligand and Receptor
Author:
Qin, Yong
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Aberrant expression of Platelet-derived growth factor A (PDGF-A) and PDGF receptor-β (PDGFR-β) play critical roles in the angiogenesis and proliferation of several malignancies. In this dissertation I explore the transcriptional regulatory role of the Gquadruplex- forming regions in the promoters of human PDGF-A and PDGFR-β, and identify new targets for developing small molecules to modulate their expression in tumors. For PDGF-A promoter, our studies focus on two essential nuclease hypersensitive elements, NHE(PDGF-A) and 5´-end far upstream 5´-SHS. The structural aspects of the intramolecular G-quadruplexes formed in NHE(PDGF-A) and the ligands to stabilize these secondary DNA structures have been investigated by using singlestranded and duplex DNA of the NHE(PDGF-A). We demonstrate that the G-quadruplexinteractive compound, TMPyP4, can selectively inhibit the basal promoter activity of PDGF-A, suggesting that the NHE(PDGF-A) G-quadruplex acts as a repressor in PDGF-A transcription. We also found that the 5´-SHS G-rich strand oligomer can invade the NHE(PDGF-A) and form a unique three-stranded complex in supercoiled plasmids, which is facilitated by potassium ions and TMPyP4. Therefore, we propose a novel molecular mechanism for transcriptional silencing of the NHE(PDGF-A) by 5´-SHS in the PDGF-A promoter, in that the formation of G-quadruplex in the NHE(PDGF-A) provides a platform for the G-rich strand of 5´-SHS to invade and form a partial duplex DNA with the C-rich strand of the NHE(PDGF-A), resulting in displacement of hnRNP K and thus transcription silencing. Prior to the studies describe here, the promoter of human PDGFR-β had not been identified. Herein, we have cloned and characterized the first functional promoter of human PDGFR-β gene. A crucial highly GC-rich region (NHE(PDGFR-β)) in the human PDGFR-β promoter has been identified by its hypersensitivity to the S1 nuclease. Further studies demonstrate that stable G-quadruplex structures can form in the G-rich strand of NHE(PDGFR-β). The G-quadruplex-interactive molecule, telomestatin, can selectively stabilize G-quadruplexes formed in the human PDGFR-β promoter and inhibit its expression in Daoy cells. On the basis of these results, we propose that ligandmediated stabilization of the G-quadruplex structure in the proximal promoter region of human PDGF-A or PDGFR-β can be used to modulate the expression of these protooncogenes.
Type:
text; Electronic Dissertation
Keywords:
PDGF; Human Promoter; Cancer; G-quadruplex; Drug
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Pharmaceutical Sciences; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Hurley, Laurence H
Committee Chair:
Hurley, Laurence H

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleTargeting the Promoter Regions of PDGF Ligand and Receptoren_US
dc.creatorQin, Yongen_US
dc.contributor.authorQin, Yongen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractAberrant expression of Platelet-derived growth factor A (PDGF-A) and PDGF receptor-β (PDGFR-β) play critical roles in the angiogenesis and proliferation of several malignancies. In this dissertation I explore the transcriptional regulatory role of the Gquadruplex- forming regions in the promoters of human PDGF-A and PDGFR-β, and identify new targets for developing small molecules to modulate their expression in tumors. For PDGF-A promoter, our studies focus on two essential nuclease hypersensitive elements, NHE(PDGF-A) and 5´-end far upstream 5´-SHS. The structural aspects of the intramolecular G-quadruplexes formed in NHE(PDGF-A) and the ligands to stabilize these secondary DNA structures have been investigated by using singlestranded and duplex DNA of the NHE(PDGF-A). We demonstrate that the G-quadruplexinteractive compound, TMPyP4, can selectively inhibit the basal promoter activity of PDGF-A, suggesting that the NHE(PDGF-A) G-quadruplex acts as a repressor in PDGF-A transcription. We also found that the 5´-SHS G-rich strand oligomer can invade the NHE(PDGF-A) and form a unique three-stranded complex in supercoiled plasmids, which is facilitated by potassium ions and TMPyP4. Therefore, we propose a novel molecular mechanism for transcriptional silencing of the NHE(PDGF-A) by 5´-SHS in the PDGF-A promoter, in that the formation of G-quadruplex in the NHE(PDGF-A) provides a platform for the G-rich strand of 5´-SHS to invade and form a partial duplex DNA with the C-rich strand of the NHE(PDGF-A), resulting in displacement of hnRNP K and thus transcription silencing. Prior to the studies describe here, the promoter of human PDGFR-β had not been identified. Herein, we have cloned and characterized the first functional promoter of human PDGFR-β gene. A crucial highly GC-rich region (NHE(PDGFR-β)) in the human PDGFR-β promoter has been identified by its hypersensitivity to the S1 nuclease. Further studies demonstrate that stable G-quadruplex structures can form in the G-rich strand of NHE(PDGFR-β). The G-quadruplex-interactive molecule, telomestatin, can selectively stabilize G-quadruplexes formed in the human PDGFR-β promoter and inhibit its expression in Daoy cells. On the basis of these results, we propose that ligandmediated stabilization of the G-quadruplex structure in the proximal promoter region of human PDGF-A or PDGFR-β can be used to modulate the expression of these protooncogenes.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectPDGFen_US
dc.subjectHuman Promoteren_US
dc.subjectCanceren_US
dc.subjectG-quadruplexen_US
dc.subjectDrugen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePharmaceutical Sciencesen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorHurley, Laurence Hen_US
dc.contributor.chairHurley, Laurence Hen_US
dc.contributor.committeememberYang, Danzhouen_US
dc.contributor.committeememberMontfort, Billen_US
dc.contributor.committeememberFlynn, Garyen_US
dc.identifier.proquest2664en_US
dc.identifier.oclc659749667en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.