Persistent Link:
http://hdl.handle.net/10150/194279
Title:
Comparative Genomics in Two Dicot Model Systems
Author:
Park, Gyoungju Nah
Issue Date:
2008
Publisher:
The University of Arizona.
Rights:
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
Abstract:
Comparative sequence analyses were performed with members of the Solanaceae and the Brassicaceae. These studies investigated genomic organization, determined levels of microcolinearity, identified orthologous genes and investigated the molecular basis of trait differences. The first analysis was performed by comparison of tomato (Solanum lycopersicum) genomic sequence (119 kb) containing the JOINTLESS1 (J1) locus with orthologous sequences from two potato species, a diploid, Solanum bulbocastanum (800-900 Mb, 2N=2X=24), and a hexaploid, Solanum demissum (2,700 Mb, 2N=6X=72). Gene colinearity was well maintained across all three regions. Twelve orthologous open reading frames were identified in identical order and orientation and included three putative J1 orthologs with 93-96% amino acid sequence identity in both potato species. Although these regions were highly conserved, several local disruptions were detected and included small-scale expansion/contraction regions with intergenic sequences, non-colinear genes and transposable elements. Three putative Solanaceous-specific genes were also identified in this analysis. The second analysis was performed by comparison of a Thellungiella halophila (T. halophila) genomic sequence (193 kb) containing the SALT OVERLY SENSITIVE1 (SOS1) locus with the orthologous sequence (146 kb) in Arabidopsis thaliana (Arabidopsis). T. halophila is a halophytic relative of Arabidopsis thaliana that exhibits extreme salt tolerance. Twenty-five genes, including the putative T. halophila SOS1 (ThSOS1), showed a high degree of colinearity with Arabidopsis genes in the corresponding region. Although the two sequences were significantly colinear, several local rearrangements were detected which were caused by tandem duplications and inversions. Three major expansion/contraction regions in T. halophila contained five LTR retrotransposons which contributed to genomic size variation in this region. ThSOS1 shares similar gene structure and sequence with Arabidopsis SOS1 (AtSOS1), including 11 transmembrane domains and a cyclic nucleotide-binding domain. Three Simple Sequence Repeats (SSRs) were detected within a 540 bp region upstream of the putative translational start site in ThSOS1. The (CTT)n repeat is present in different copy numbers in ThSOS1 (18 repeats) and AtSOS1 (3 repeats). When present in the 5' UTRs of some Arabidopsis genes, (CTT)n serves as a putative salicylic acid responsive element. These SSRs may serve as cis-acting elements affecting differential mRNA accumulation of SOS1 in the two species.
Type:
text; Electronic Dissertation
Keywords:
Comparative genomics; Annotation; Microcolinearity; Solanum bulbocastanum; Solanum demissum; Thellungiella halophila
Degree Name:
PhD
Degree Level:
doctoral
Degree Program:
Plant Science; Graduate College
Degree Grantor:
University of Arizona
Advisor:
Wing, Rod A
Committee Chair:
Wing, Rod A

Full metadata record

DC FieldValue Language
dc.language.isoENen_US
dc.titleComparative Genomics in Two Dicot Model Systemsen_US
dc.creatorPark, Gyoungju Nahen_US
dc.contributor.authorPark, Gyoungju Nahen_US
dc.date.issued2008en_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.description.abstractComparative sequence analyses were performed with members of the Solanaceae and the Brassicaceae. These studies investigated genomic organization, determined levels of microcolinearity, identified orthologous genes and investigated the molecular basis of trait differences. The first analysis was performed by comparison of tomato (Solanum lycopersicum) genomic sequence (119 kb) containing the JOINTLESS1 (J1) locus with orthologous sequences from two potato species, a diploid, Solanum bulbocastanum (800-900 Mb, 2N=2X=24), and a hexaploid, Solanum demissum (2,700 Mb, 2N=6X=72). Gene colinearity was well maintained across all three regions. Twelve orthologous open reading frames were identified in identical order and orientation and included three putative J1 orthologs with 93-96% amino acid sequence identity in both potato species. Although these regions were highly conserved, several local disruptions were detected and included small-scale expansion/contraction regions with intergenic sequences, non-colinear genes and transposable elements. Three putative Solanaceous-specific genes were also identified in this analysis. The second analysis was performed by comparison of a Thellungiella halophila (T. halophila) genomic sequence (193 kb) containing the SALT OVERLY SENSITIVE1 (SOS1) locus with the orthologous sequence (146 kb) in Arabidopsis thaliana (Arabidopsis). T. halophila is a halophytic relative of Arabidopsis thaliana that exhibits extreme salt tolerance. Twenty-five genes, including the putative T. halophila SOS1 (ThSOS1), showed a high degree of colinearity with Arabidopsis genes in the corresponding region. Although the two sequences were significantly colinear, several local rearrangements were detected which were caused by tandem duplications and inversions. Three major expansion/contraction regions in T. halophila contained five LTR retrotransposons which contributed to genomic size variation in this region. ThSOS1 shares similar gene structure and sequence with Arabidopsis SOS1 (AtSOS1), including 11 transmembrane domains and a cyclic nucleotide-binding domain. Three Simple Sequence Repeats (SSRs) were detected within a 540 bp region upstream of the putative translational start site in ThSOS1. The (CTT)n repeat is present in different copy numbers in ThSOS1 (18 repeats) and AtSOS1 (3 repeats). When present in the 5' UTRs of some Arabidopsis genes, (CTT)n serves as a putative salicylic acid responsive element. These SSRs may serve as cis-acting elements affecting differential mRNA accumulation of SOS1 in the two species.en_US
dc.typetexten_US
dc.typeElectronic Dissertationen_US
dc.subjectComparative genomicsen_US
dc.subjectAnnotationen_US
dc.subjectMicrocolinearityen_US
dc.subjectSolanum bulbocastanumen_US
dc.subjectSolanum demissumen_US
dc.subjectThellungiella halophilaen_US
thesis.degree.namePhDen_US
thesis.degree.leveldoctoralen_US
thesis.degree.disciplinePlant Scienceen_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.grantorUniversity of Arizonaen_US
dc.contributor.advisorWing, Rod Aen_US
dc.contributor.chairWing, Rod Aen_US
dc.contributor.committeememberWing, Rod A.en_US
dc.contributor.committeememberSchumaker, Karenen_US
dc.contributor.committeememberYadegari, Raminen_US
dc.contributor.committeememberTax, Fransen_US
dc.contributor.committeememberGiovannoni, Jamesen_US
dc.identifier.proquest2781en_US
dc.identifier.oclc659749817en_US
All Items in UA Campus Repository are protected by copyright, with all rights reserved, unless otherwise indicated.